Test Pearl 100 — Cryptography

Pearls of Computer Science (201300070) 5 October 2018, 13:45–14:45 Module coordinator: Doina Bucur Instructor: Andreas Peter

- You may use 1 A4 sheet with your own notes for this test, as well as a simple calculator
- Scientific or graphical calculators, laptops, mobile phones, books etc. are not allowed. *Put those in your bag now (with the sound switched off)!*
- Always motivate/explain your answers, unless it is explicitly stated not to!
- Total number of points: 38

14 points

Question 1 Write down your answers (A, B, C, or D) on your answer sheet and **NOT** on the exam sheet at hand. There is only **one correct answer per subquestion**. Your answers require no motivation.

IMPORTANT: Don't just guess; for each wrong answer, you get 1 point deducted!

- (a) Let JVVIMQ be a ciphertext produced by the Vigenère cipher using the key PIN. Which of the following is the underlying plaintext?
 - A. ATTACK
 - B. DEFEND
 - C. UNITED
 - D. CRYPTO
- (b) According to the second Kerckhoffs' principle, which of the following statements is correct?
 - A. The secret key used in a secret-key encryption scheme must be able to fall into the hands of the enemy without inconvenience.
 - B. The public key used in a public-key encryption scheme must be able to fall into the hands of the enemy without inconvenience.
 - C. The source code of the implementation of an encryption scheme must **not** be able to fall into the hands of the enemy.
 - D. The output of an encryption scheme (i.e., a ciphertext) must **not** be able to fall into the hands of the enemy.
- (c) Suppose that Alice encrypts the plaintext 000 using the One-Time-Pad. Assuming that you don't know which key Alice used in the encryption, what is the probability that 000 is the resulting ciphertext?
 - A. 0%
 - B. 6.25%
 - C. 12.5%
 - D. 25%
- (d) What is the concept of "hybrid encryption"?
 - A. First use a secret-key encryption scheme to exchange a key, then use this key in a public-key encryption scheme.
 - B. First encrypt a given message with a secret-key encryption scheme, then produce a public-key signature on the resulting ciphertext.
 - C. First use a public-key encryption scheme to exchange a key, then use this key in a secret-key encryption scheme.
 - D. First produce a public-key signature on a given message, then encrypt the resulting signature with a secret-key encryption scheme.
- (e) Let p=31 and q=43 be primes, and N=pq=1333. What is the result of the computation: $(1234^{1260}+2567) \mod 1333$?
 - A. 1232
 - B. 1233
 - C. 1234
 - D. 1235

(f) Which elements are contained in \mathbb{Z}_{12}^* ?

A. 1,5,7,11

B. 0, 1, 5, 7

C. 3,5,7,11

D. 1,3,5,7

(g) Which of the following numbers is a valid (= generated as described in the lecture), but too small to be secure, RSA modulus?

A. N = 9

B. N = 29

C. N = 1024

D. N = 1271

7 points Question 2 Consider the following keyed-function

$$F: \{0,1\}^2 \times \{0,1\}^2 \to \{0,1\}^2$$
 whereas $F(K,x) = K \oplus x$.

Decrypt the 4-bit ciphertext c = 1101 using the Feistel cipher with 3 rounds, above keyed-function F, and the round-keys $K_0 = 11$, $K_1 = 10$, and $K_2 = 01$.

9 points Question 3 Consider the following plaintext message (a 5-bit string)

11010

Encrypt this message in the CBC-mode by using the following 2-bit block cipher

$$\mathsf{E}_k(b_1b_0) = b_1b_0 \oplus k$$

with the bit-string k = 10 as secret key (note that b_1b_0 denotes an arbitrary 2-bit plaintext message). As initialization vector for the CBC-mode, use the bit-string IV = 11.

8 points Question 4 Let p = 37, q = 41, and N = pq = 1517. Assume that we use (N, e) = (1517, 823) as the public key in the RSA signature scheme.

- (a) Compute Euler's totient function $\varphi(N)$.
- (b) Compute the RSA secret key $d \ge 0$ that corresponds to the public key (N,e) = (1517,823). The following table with some pre-computed calculations might be helpful (as it avoids the need to compute the extended Euclidean algorithm):

A.	gcd(p,q) = 1	E.	$1 = 1440 \cdot 197 + 1517 \cdot (-187)$
B.	$gcd(\varphi(N), N) = 1$	F.	$1 = 37 \cdot 10 + 41 \cdot (-9)$
C.	$gcd(\varphi(N), e) = 1$	G.	$1 = 1517 \cdot (-319) + 823 \cdot 588$
D.	gcd(N,e) = 1	H.	$1 = 1440 \cdot (-4) + 823 \cdot 7$

(c) Sign the message m=2 using the RSA signature scheme with the in (b) computed secret key $d \ge 0$ (if you couldn't solve (b), then use the key d=11, which is different from the correct result in (b)!).