Discrete Mathematics for Computer Science, Solution/Correction standard, Sample Test, Part 1

1. (a) $\exists_{a \in A} \exists_{k \in \mathbb{Z}^{+}}\left[a=k^{2}\right]$.
(b) $\neg \exists_{a \in A}\left[a \neq 1 \wedge \forall_{d \in \mathbb{Z}^{+}}[d \mid a \rightarrow(d=1 \vee d=a)]\right]$.

For each expression that is not logically equivalent to the ones above: [$\mathbf{0} \mathbf{~ p t}$]
2.

We take $\neg t$ as extra premise and prove: $\neg q$.

(1)	$\neg t$	Extra Premise
(2)	$p \rightarrow t$	Premise
(3)	$\neg t \rightarrow \neg p$	(2), L13
(4)	$\neg p$	(1),(3), R1
(5)	$\neg p \vee q$	(4), R8
(6)	$(\neg p \vee q) \rightarrow r$	Premise
(7)	r	(5),(6), R1
(8)	$\neg p \wedge r$	(4),(7),R4
(9)	$(\neg p \wedge r) \rightarrow \neg s$	Premise
(10)	$\neg s$	(8),(9),R1
(11)	$s \vee \neg q$	Premise
(12)	$\neg q$	(11),(10), R5

For each forgotten Law or Rule: $-1 \mathbf{p t}$.
If deduction contains a step that is not logically correct: at most $\mathbf{1} \mathbf{p t}$ for the entire exercise.
3. (a) Let $C \in \mathcal{P}(A) \cup \mathcal{P}(B)$. Then $C \in \mathcal{P}(A)$ or $C \in \mathcal{P}(B)$, so $C \subseteq A$ or $C \subseteq B$. Hence $C \subseteq A \cup B$, and so $C \in \mathcal{P}(A \cup B)$.
(b) The statement is false.

$$
\text { Counterexample: } \mathcal{U}=\{1,2\}, A=\{1\} \text { and } B=\{2\} \text {. }
$$

