Discrete Mathematics for Computer Science, Solution/Correction standard, Sample Test, Part 1

1. (a)
$$\exists_{a \in A} \exists_{k \in \mathbb{Z}^+} [a = k^2]$$
. [3 pt]

(b)
$$\neg \exists_{a \in A} [a \neq 1 \land \forall_{d \in \mathbb{Z}^+} [d \mid a \rightarrow (d = 1 \lor d = a)]].$$
 [3 pt]

For each expression that is not logically equivalent to the ones above: [0 pt]

2.

We take $\neg t$ as extra premise and prove: $\neg q$.

(1)	$\neg t$	Extra Premise
(2)	$p \to t$	Premise
(3)	$\neg t \rightarrow \neg p$	(2), L13
(4)	$\neg p$	(1),(3), R1
(5)	$\neg p \lor q$	(4), R8
(6)	$(\neg p \lor q) \to r$	Premise
(7)	r	(5),(6),R1
(8)	$\neg p \wedge r$	(4),(7),R4
(9)	$(\neg p \land r) \to \neg s$	Premise
(10)	$\neg s$	(8),(9),R1
(11)	$s \vee \neg q$	Premise
(12)	$\neg q$	(11),(10), R5

For each forgotten Law or Rule: -1 pt. If deduction contains a step that is not logically correct: at most **1** pt for the entire exercise.

- 3. (a) Let $C \in \mathcal{P}(A) \cup \mathcal{P}(B)$. Then $C \in \mathcal{P}(A)$ or $C \in \mathcal{P}(B)$, so $C \subseteq A$ or $C \subseteq B$. Hence $C \subseteq A \cup B$, and so $C \in \mathcal{P}(A \cup B)$. [3 pt]
 - (b) The statement is false. Counterexample: $\mathcal{U} = \{1, 2\}, A = \{1\} \text{ and } B = \{2\}.$ [1 pt] Then $A \cup B = \{1, 2\}, \mathcal{P}(A) = \{\emptyset, \{1\}\}$ and $\mathcal{P}(B) = \{\emptyset, \{2\}\}.$ So $\mathcal{P}(A \cup B) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$ and $\mathcal{P}(A) \cup \mathcal{P}(B) = \{\emptyset, \{1\}, \{2\}\}.$ [2 pt]

[6 pt]