
UT/EWI – Network Systems 2015 Test 1: 2015-02-13

Network Systems (201300179/201400431), Test 1
February 13, 2014, 13:45–15:15

Brief answers

1. A transatlantic link and reliable data transfer

(a)4 pt

transmission delay = 40000 / 20 · 109 = 2 · 10−6 = 2 µs.
propagation delay = 10000 · 103/2 · 108 = 0.05 s.

Surprisingly many students made minor calculation errors in this and subsequent questions, in particular, being
off by powers of 10. Even though this didn’t cost you many points, it’s still a pity; also, your future employer
will not be so easy on you for being a factor of 10 off...

(b)4 pt

That’s 200 000 packets. Each of them takes 2µs to send, followed by 2 · 0.05 seconds of waiting for the
ack. That makes the total time 200 000 · 0.100002 = 20 000.4 s. (Strictly speaking, we don’t need to wait
for that last ack, so 20 000.35s is also correct.)

(c)3 pt

The number of bits we can send during 1 RTT is 0.1 · 20 · 109 = 2 · 109, which is 50 000 packets. So we
need to be able to send 50 000 packets without seeing any ACKs, so SWS must at least be 50 000.
(Strictly speaking, we need 1 more, because the ack won’t be sent until after a packet has been received
entirely.)

(d)3 pt

No waiting for ACKs is needed, so the file can be sent at full speed, taking 8 · 109/20 · 109 = 0.4 s to
transmit, followed by the one-way propagation delay for the last bit, making the total 0.45 s.

Surprisingly many students tried to calculate this based on how many RTTs are needed using the window size
calculated previously; however, that’s more complicated and not needed.

(e)3 pt

No, because the sender will never send more than SWS packets beyond the last ACK it has received,
so the receiver will also never see more than SWS packets beyond its last ack, so choosing RWS bigger
makes no difference.

(f)4 pt

HTTP 1.0 needs 4 RTT (setup, fetch page, setup, fetch image); HTTP 1.1 needs 3 RTT (setup, fetch page,
fetch image), so 1 RTT = 0.1 s, is saved.

(g)4 pt

1 (of 3)



UT/EWI – Network Systems 2015 Test 1: 2015-02-13

Frame 0 is sent ok; ack 0 is lost. Frame 0 is sent again. Receiver expects frame 1, but with RWS=2 is also
willing to receive new frame 0. It will accept the retransmission of frame 0 as if it were a new one.

There are many other possibilities; however, scenarios in which the sending node already sends frame 1 before
having seen an acknowledgement for frame 0 are not correct, because SWS=1.

2. Information theory and error-correcting codes

(a)4 pt

0.784 bits.

Suprisingly many students had trouble converting 0.9 % into a fraction of 0.009, preferring 0.09 instead.

(b)4 pt

0 for Harmless, 10 for Suspicious, 110 for Terroristic, and 111 for Syria; average is 1.21 bits

(c)4 pt

The Shannon capacity of this channel is 988.59 bit/s. So as long as we stay below 988.59/0.784=1261
messages per second, the error rate can be made arbitrarily low.

(d)4 pt

Yes. In principle, when receiving a packet with wrong CRC, the receiver can search which valid message
(including its CRC) differs least from the received one, just like with any error-detection code (although
with practical error-correcting code, a more efficient algorithm is used). And because of the property
that CRCs detect every error up to 2 bits, valid messages differ in at least 3 places (i.e., its Hamming
distance is at least 3), so after a 1-bit error, the message is still closer to the original one than to any other
valid message, so correction is indeed possible without ambiguity.

This was, intentionally, a more difficult question.

3. Peer-to-peer applications

Consider a peer-to-peer system as follows. There is one server, denoted SF, that makes available a large
file F of size F bytes to n peers. The upload rate from server SF is uF bytes per second. The download
rate of each of the n clients is d bytes per second; the upload rate of each peer is u bytes per second.

For this scenario, it is known that the overall download time DF for the file F is lower bounded as
follows:

DF ≥ max
{

F
uF

,
F
d

,
F

uF
n + u

}
.

(a)5 pt

See book (note that the formula is simpler than in the book because the download and upload speeds
are the same for all peers).

(b)4 pt

2 (of 3)



UT/EWI – Network Systems 2015 Test 1: 2015-02-13

DF and G ≥ max

{
F

uF
,

G
uG

,
F + G

d
,

F + G
uF
n + uG

n + u
,

F
uF
n + u

,
G

uG
n + u

}
The first and second term are the times that each of the servers needs to upload its own file to the
network (note that these uploads happen in parallel, so we don’t add them, just take their maximum).

Third term is the time each client needs to download both files.

The fourth term is the time needed to send both files n times through the total available uplink band-
width (which is uF + uG + nu).

The last two terms cover a rather extreme situation, namely if one file is so much bigger than the other,
that even if all the client upload bandwidth is dedicated to the bigger file, still the uploader of the
smallest file will finish his upload before the bigger file has reached all clients. (Note that he cannot
contribute his upload bandwidth to uploading the other file.)

Any answer having the first 4 terms was worth a full score (since we kind of suggested 4 terms would
be enough, and the last 2 terms are a rather extreme case). Those who gave the first 3 and the latter 2
terms, got 3 points.

(c)3 pt

Fault-tolerance, performance/scalability, goes against the idea of p2p where there is no “central author-
ity”

End of this exam.

3 (of 3)


