Written Exam
Database Transactions
and
Processes
course code: 192110982

17 April 2013 (13:45 - 17:15), CR-2L
Maurice van Keulen

Remarks:

e Motivate yours answers. The motivation / argumentation
plays an important role in grading the assignments.

e You may not consult books or notes, but only one page of
A4 size, double-sided printed. The page may contain text
(typed or hand-written) and (possibly reduced) images
(copied from the book, other sources or hand-made).

e For each assignment, the number of points is given.
They add up to 90. You get 10 points for showing up at
the exam. The grade for the exam is determined by
dividing the number of points by 10.

e There is also a practical assignment. The final grade for
the course is determined by taking twice the grade of the
exam and once the grade of the practical assignment. J

! ™
S (',L’ = R n'lt‘ Pa‘ag_
J
Consider a DBMS using sharp checkpointing, a pessimistic immediate-

update concurrency control, and a no-force commit policy.-Suppose the
database crashed and upon restart we find the following situation.

1 Recovery (20 points)

6|7 8 9110|1112
| T (T |Te| T3 | T2 | Th 2 _
Log: -+ |B|U|(CK|B|U|C|C No ofls | Mg
xr y 1N lowen, v
01 65 %)
T 7

Each record from top to bottom:
LSN, transaction id, record type, database variable, before and after image
Type: B:begin transaction, U:update, C:commit, A:abort, CK:checkpoint.

Database pages:| Page 54 Page 87
LSN:14 LSN:8

=772 y=277

(a) The information above doesn't give the values of = and y on the database
pages 54 and 87.

~ i) Can it be inferred what value of = one would find on disk in this
situation? If so, which value?

ii) Can it be inferred what value of y one would find on disk in this
situation? If so, which value?

Explain your answer.

(b) The recovery protocol reconstructs a consistent database state. Present

~ the steps of the protocol for obtaining a consistent database state in
this situation. Also give the reconstructed database state (i.e., values
of the variables =, y in pages 54 and 87). Explain your answer.

(c) There are no other records in the log for 77 other than B and C. Ap-
parently, T; is a read-only transaction. It seems superfluous to record
anything in the log for read-only transactions: even if there is a crash,

_Q__there are no updates fo roll back or roll forward. Give the main rea-
son why in practice begin and end of transactions that do not update
anything, are recorded in the log.

2 2-Phase Commit and Persistent Queues
(20 points)

Imagine a small on-line bookstore. We focus in this question on placing
orders and shipping orders. Customers search/browse the book catalogue
on a website. Obviously, the web application has a button “Order”. This
places the order for one or more books (transaction Ty in Figure 1(b)). The
company has a warehouse with books. Some time after the order has
been placed, the warehouse ‘processes’ the order: the books associated
with the order will be shipped to the customer, the inventory administration
will be updated, and the status of the order will be changed from ‘ordered’
to ‘shipped’ (transaction 73 in Figure 1(b)). This functionality is realized
with an architecture with 5 servers (see Figure 1(a)).

T, New order:
Insert order into Ss;
Enqueue ‘order shipment' request in S,;

51 Webserver running website
and all application logic for

ordering and shipping.
S: Persistent queue server. T Sh(i)OM!;"IIT'
S; Order DB. % oIl .
2 Dequeue ‘order shipment' request from 55

5S¢ Warehouse DB (inventory).
Ss; Transaction manager coor- :
B e R books in 5;;
dnaing cisribuled franean Updale order status in S; to ‘shipped’;

tions.
(a) Servers COMMIT

Update inventory level for the ordered

(b) Transactions
Figure 1: Involved servers and transactions

(a) The ‘COMMIT" of both transactions is executed with the 2-Phase Com-
mit protocol coordinated by ;.

i) Which servers are the cohorts for T,?

ii) Which servers are the cohorts for T,?

Explain you answers.

(b) There is an integrity constraint in the Warehouse DB stating that the
inventory of a book should be positive. The constraint is checked at
commit time. Suppose for a certain order, the inventory level would
become negative, i.e., the constraint would fire causing transaction T;
to abort.

i) Specify exactly which messages are exchanged between coor-
dinator and cohorts during the 2-phase commit protocol for this
transaction.

ii) What would happen after the 2-phase commit protocol finished?

Explain you answers.

(¢) Suppose during the 2-phase commit protocol of T; for a certain order,

the ‘prepare to commit' message to S; gets lost due to some isolated

g network glitch. Obviously, some time passes before the time-out pro-

/{/ tocol comes into effect causing the global transaction to abort. Explain

exactly what prevents T; to be executed for this order (preventing the
aborted hence cancelled order to be shipped).

3 Serializability (10 points)
Given this stream of operations:

= wy(x) wy(x) wa(y) 1 waly) wa(2) ez wa(z) s e

(/. (a) Draw the serialization graph. Is it possible to infer from the serialization
ray graph whether or not the schedule is serializable? If so, is it serializable
or not?
(b) If this stream of operations is fed to a pessimistic concurrency control,
0 i) in what order are the operations ultimately executed?
/L ii) with which serial schedule is this execution equivalent?
Explain your answer.

4 Anomalies (24 points)

Suppose the order DB of question 2 has two tables, ‘ORDER’ and ‘OR-
DERLINE’, and the ‘Insert order into S5’ is realized with three insert state-
ments (see Figure 2).

Order DB schema

Table Attributes

ORDER OrderlD, CustomerName, Status
ORDERLINE OrderlD, BooklD, Quantity, Price

SQL statements for ‘Insert order into S5’

INSERT INTO ORDER VALUES (4321, "A’, ‘'ordered’);
INSERT INTO ORDERLINE VALUES (4321, 123, 1, 14.95);
INSERT INTO ORDERLINE VALUES (4321, 567, 2, 8.95);

Figure 2: More details on Order DB and ordering

(a) INSERT statements can cause phantoms. Construct an example of
a scenario (including concrete SQL statements) in which the INSERT
statements of Figure 2 cause a phantom to occur. Explain your an-
swer.

(b) INSERT statements can also cause non-repeatable reads. Gonstruct
an example of a scenario (including concrete SQL statements) in which
the INSERT statements of Figure 2 cause a non-repeatable read to oc-
cur. Explain your answer.

Isolation level Locking implementation

READ UNCOMMITTED | No read locks

READ COMMITTED Short-duration read locks on rows returned by SELECT
REPEATAELE READ Long-duration read locks on rows returned by SELECT

| SERIALIZABLE Long-duration read lock on predicate specified in WHERE clause

Figure 3: Isolation levels and their locking implementation

(c) The different isolation levels are specified in terms of which anomalies
they do and do not prevent. Their implementation is often realized with
different ways of read locking (see Figure 3).

i) Which kind of locking prevents phantoms? Explain in your sce-
nario of question 4(a), which SQL statement obtains this kind of
lock that causes the phantom-producing INSERT statement to wait.

i) Which kind of locking prevents non-repeatable reads? Explain
in your scenario of question 4(b), which SQL statement obtains
this kind of lock that causes the non-repeatable-read-producing
INSERT statement to wait.

5 TRPC (16 points)

Figure 4 presents an example of TRPC where one transaction calls a pro-
cedure “p”. A Remote Procedure Call (RPC) is a call to a procedure
that is executed on another computer. RPC supports programming for
client/server with code generators: simply program the call and the pro-
cedure itself as if they run on the same computer (‘Original’ in Figure 4);
the code generators attach exira code, called sfubs, that handles all com-
munication between client and server computers. The arrows in Figure 4
indicate control flow: which line(s) of code calls which procedure.
Transactional RPC (TRPC) is an extension of RPC supporting program-
ming transaction boundaries (tx_begin, tx_commit, tx_abort). The code
generators attach even more code in the stubs to handle communication
with the transaction manager (not shown).

Client Server

H x_begin pil4 :‘.
: call p() body Y
i tx_commit)
Original = —

; m i i stub, Stuby
i porprl i i tx_begin { > |p_request{
i e=|callp0 3 i body ;
P tx_commit : I:} :) : body
- : : message

PN T : i stub,

e T i : oy =
¥ body £ I body —-—
| R

f_commit {
body

"-. 8 } _‘.‘I‘:

Figure 4: Stubs generated by TRPC (simplified)

g_, (a) Which of the 4 stubs communicate with the transaction manager?
(b) For each of those stubs, what transaction-related information is com-
municated from client or server to the transaction manager and the

o other way around?

~ (c) Suppose the body of “p" appends a line to a particular file. Being
part of a transaction which may possibly abort, this write to the file
may need to be undone (i.e., rolled back). Explain how this is accom-
plished, or if you don't know this as a fact, make an educated guess

(provide arguments that sketch how this should be accomplished).

6

