
UNIVERSITY OF TWENTE

Department of Electrical Engineering, Mathematics and Computer Science

Solution exam Mathematics C1 Cayley on Friday March 31, 2017, 13.45 – 15.45 hours.

The solutions of the exercises should be clearly formulated. Moreover, in all cases you should

motivate your answer!

You are not allowed to use a formula sheet and you are not allowed to use a calculator.

1.

Given is the following linear system of equations:

{

6x1 + 2x2 − 6x4 = 6

−3x1 + x2 + 2x3 + x4 = −3

This system can also be written as A1x = b1 where A1 is the coefficient matrix and

b1 is the right­hand side of this system.

a) Determine the solution set of this system ans write it in parametric vector form.

The associated augmented matrix is given by:

(

6 2 0 −6 6

−3 1 2 1 −3

)

Using elementary row operations we obtain:

(

6 2 0 −6 6

−3 1 2 1 −3

)

∼
(

3 1 0 −3 3

−3 1 2 1 −3

)

∼
(

3 1 0 −3 3

0 2 2 −2 0

)

∼
(

3 1 0 −3 3

0 1 1 −1 0

)

∼
(

3 0 −1 −2 3

0 1 1 −1 0

)

∼
(

1 0 −1
3 −2

3 1

0 1 1 −1 0

)

We obtain:






















x1 = 1+ 1
3x3 + 2

3x4

x2 = −x3 + x4

x3 is free

x4 is free

In parametric vector form this yields:












1

0

0

0













+ Span



































1

−3

3

0













,













2

3

0

3



































.



b) Determine NullA1.

We obtain:

NullA1 = Span



































1

−3

3

0













,













2

3

0

3



































.

Given is a second linear system of equations:

{

−3x1 + x2 + 2x3 + x4 = −3

x3 − x4 = 0

This second system can also be written as A2x = b2 where A2 is the coefficient matrix

and b2 is the right­hand side of this second system.

c) Determine all vectors x which satisfy A1x = b1 as well as A2x = b2.

We can simply combine the two linear systems. Two steps can simplify this. First,

note that the second equation of the first system is the same as the first equation of

the second system. We can simply delete that equation. Second, we can start with the

reduced echelon form of the first system. Hence we need to solve a linear system with

augmented matrix:







1 0 −1
3 −2

3 1

0 1 1 −1 0

0 0 1 −1 0







Using elementary row operations we obtain:







1 0 −1
3 −2

3 1

0 1 1 −1 0

0 0 1 −1 0





 ∼







1 0 0 −1 1

0 1 0 0 0

0 0 1 −1 0







We obtain:























x1 = 1+ x4

x2 = 0

x3 = x4

x4 is free

In parametric vector form this yields:













1

0

0

0













+ Span



































1

0

1

1



































.



2.

The matrices A and B are given by:

A =







α 4− 2α α− 1

α 2−α α− 1

−2α 2−α 1−α





 , B =
(

2 3 2
)

a) Determine all α ∈ R for which A is invertible.

Using elementary row operations, we have:







α 4− 2α α− 1

α 2−α α− 1

−2α 2−α 1−α





 ∼







α 4− 2α α− 1

0 −2+α 0

0 10− 5α α− 1







∼







α 0 α− 1

0 −2+α 0

0 0 α− 1







∼







α 0 0

0 −2+α 0

0 0 α− 1







(or use the determinant). It is then clear that the matrix is invertible if and only if

α ≠ {0,1,2}.

b) Take α = −1. Determine A−1.

We have:

A =







−1 6 −2

−1 3 −2

2 3 2







For computation of the inverse, we consider the following expanded matrix:

(

A I
)

=







−1 6 −2 1 0 0

−1 3 −2 0 1 0

2 3 2 0 0 1







∼







1 −6 2 −1 0 0

0 −3 0 −1 1 0

0 15 −2 2 0 1







∼







1 0 2 1 −2 0

0 −3 0 −1 1 0

0 0 −2 −3 5 1







∼







1 0 0 −2 3 1

0 −3 0 −1 1 0

0 0 −2 −3 5 1





 ∼









1 0 0 −2 3 1

0 1 0
1
3 −1

3 0

0 0 1
3
2 −5

2 −1
2









and hence

A−1 =









−2 3 1
1
3 −1

3 0

3
2 −5

2 −1
2











c) Take α = −1. Determine a matrix C such that CA = B.

Since we know that A is invertible, we have:

C = BA−1

We find:

C =
(

2 3 2
)









−2 3 1
1
3 −1

3 0

3
2 −5

2 −1
2









=
(

0 0 1
)

3.

Given are three vectors v1, v2 and v3 such that:

Span{v1,v2} = Span{v2,v3}

Show that {v1,v2,v3} is linearly dependent.

We clearly have

v1 ∈ Span{v1,v2} = Span{v2,v3}

This implies there exists α and β such that:

v1 = αv2 + βv3

Since one of the vectors, namely v1 in S = {v1,v2,v3} is a linear combination of the

other vectors in S we find, by defintion, that the set of vectors in S is linearly dependent.

4.

The matrix A is given by:

A =







0 −5 −3

−2 0 0

2 −4 −4







a) Show that 2 is an eigenvalue of the matrix A.

Using elementary row operations we obtain:

2I −A =







2 5 3

2 2 0

−2 4 6





 ∼







2 5 3

0 −3 −3

0 9 9





 ∼







2 5 3

0 1 1

0 1 1







∼







2 0 −2

0 1 1

0 0 0





 ∼







1 0 −1

0 1 1

0 0 0







Clearly 2I − A is not invertible. This implies that 2 is an eigenvalue of the matrix A.

Moreover, we immediately obtain the associated eigenspace

E2 = Null(2I −A) = Span

















1

−1

1



















b) Determine the eigenvalues of A and the corresponding eigenspaces.

Using elementary row operations we obtain:

λI −A =







λ 5 3

2 λ 0

−2 4 λ+ 4





 ∼







λ 5 3

2 λ 0

0 λ+ 4 λ+ 4







We obtain:

det(λI −A) = (λ+ 4)det







λ 5 3

2 λ 0

0 1 1







Again, using elementary row operations we obtain:







λ 5 3

2 λ 0

0 1 1





 ∼







λ 0 −2

2 0 −λ
0 1 1







Therefore (expanding around second column):

det(λI −A) = (λ+ 4)det







λ 0 −2

2 0 −λ
0 1 1





 = (λ+ 4)(λ2 − 4)

In other words, we have eigenvalues 2,−2 and −4.

We already found the eigenspace associated with eigenvalue 2. Remains the eigenspaces

associated with eigenvalues −4 and −2.

Using elementary row operations we obtain:

−2I −A =







−2 5 3

2 −2 0

−2 4 2





 ∼







1 −1 0

0 3 3

0 2 2





 ∼







1 −1 0

0 1 1

0 0 0







We immediately obtain the associated eigenspace

E−2 = Null(−2I −A) = Span

















1

1

−1

















Using elementary row operations we obtain:

−4I −A =







−4 5 3

2 −4 0

−2 4 0





 ∼







−4 5 3

1 −2 0

0 0 0





 ∼







0 −3 3

1 −2 0

0 0 0





 ∼







0 1 −1

1 −2 0

0 0 0







We immediately obtain the associated eigenspace

E−4 = Null(−4I −A) = Span

















2

1

1



















c) Determine the eigenvalues of A5 and the corresponding eigenspaces.

If Ax = λx then we obtain A5x = λ5x. In other words, A5 has eigenvalues 25 = 32,

(−2)5 = −32 and (−4)5 = −1024 with associated eigenspaces:

E32 = Span

















1

−1

1

















, E−32 = Span

















1

1

−1

















, E−1024 = Span

















2

1

1

















5.

Given is that the eigenvalues of the matrix A ∈ R3×3 are given by 1, 0 and −1 with

eigenvectors p1, p2 and p3, respectively:

p1 =







0

1

0





 , p2 =







1

1

1





 , p3 =







1

1

0







Determine the matrix A.

We have A = PDP−1 with P a matrix whose columns are the eigenvectors of A and D a

diagonal matrix whose diagonal entries are the eigenvalues of A. We have:

P =







0 1 1

1 1 1

0 1 0





 , D =







1 0 0

0 0 0

0 0 −1







and

(

P I
)

=







0 1 1 1 0 0

1 1 1 0 1 0

0 1 0 0 0 1





 ∼







1 1 1 0 1 0

0 1 1 1 0 0

0 1 0 0 0 1







∼







1 0 0 −1 1 0

0 1 1 1 0 0

0 0 −1 −1 0 1





 ∼







1 0 0 −1 1 0

0 1 1 1 0 0

0 0 1 1 0 −1







∼







1 0 0 −1 1 0

0 1 0 0 0 1

0 0 1 1 0 −1







and

P−1 =







−1 1 0

0 0 1

1 0 −1







but then

A = PDP−1 =







0 1 1

1 1 1

0 1 0













1 0 0

0 0 0

0 0 −1













−1 1 0

0 0 1

1 0 −1





 =







0 1 1

1 1 1

0 1 0













−1 1 0

0 0 0

−1 0 1







=







−1 0 1

−2 1 1

0 0 0









6.

T : R2 → R
2 is the linear transformation which first rotates each point (x1, x2) ∈ R2

over 45 degrees (counter clockwise) and then scales the result by
√

2.

a) Determine the representation matrix of T .

We compute the image of the standard basis vectors. We get

(

1

0

)

→





1
2

√
2

1
2

√
2



 →
(

1

1

)

and

(

0

1

)

→




−1
2

√
2

1
2

√
2



→
(

−1

1

)

where in each case I first rotate and then scale. I find:

[T] = A =
(

1 −1

1 1

)

b) Determine the representation matrix of T16.

We can note that when rotating and scaling the order does not affect the result. There­

fore, we need to rotate in total over 16 · 45 = 720 degrees which does not do anything

and scale by
√

2
16 = 28 = 256. Therefore

[T16] =
(

256 0

0 256

)

Alternatively, you can use [T16] = [T]16

[T]2 =
(

0 −2

2 0

)

[T]4 = [T]2[T]2 =
(

−4 0

0 −4

)

[T]8 = [T]4[T]4 =
(

16 0

0 16

)

[T]16 = [T]8[T]8 =
(

256 0

0 256

)



7.

Given are the vectors v1, v2, v3 and v4:

v1 =







3

6

−3





 , v2 =







−2

−4

2





 , v3 =







1

1

−1





 , v4 =







0

1

0







a) Determine a basis B for Span{v1,v2,v3,v4}.
We have using elementary row operations:







3 −2 1 0

6 −4 1 1

−3 2 −1 0





 ∼







3 −2 1 0

0 0 −1 1

0 0 0 0







We see pivots in column 1 and 3. Hence a basis is

B = {v1,v3}

but there are many other options.

b) Determine [v5]B for v5 = v1 + v3 + v4.

We have:

v5 =







4

8

−4





 = 4
3v1

Hence

[v5]B =





4
3

0





8.

Given are the matrices:

A =







1 2 3

1 2 1

2 0 3





 , B =







1 2 3

0 2 1

0 0 3





 .

Determine

det(BTA−1BA)

We have:

det(BTA−1BA) = det(BT)det(A−1)det(B)det(A)

= det(B)det(A−1)det(B)det(A)

= det(B)det(A)−1 det(B)det(A)

= det(B)2

Since B is upper diagonal we easily see that det(B) = 6 and hence:

det(BTA−1BA) = 36


