
Course : Mathematics B2 (Newton)

Date : January 13, 2016
Time : 13.45 - 15.45

Motivate all answers and calculations.
The use of electronic devices is not permitted.

[3p] 1. a) Show by computation that for positive a ∈ R

lim
x→a

x− a
√
x− a+ 3−

√
3

= 2
√

3

Use l’Hopital’s rule [1/2 p]

and check ’0/0’ [1/2 p]

Then

lim
x→a

1
1

2
√
x− a+ 3

[3/2p]

= 2
√

3 [1/2p]

Alternatively, ’square root trick’

lim
x→a

x− a
√
x− a+ 3−

√
3
·
√
x− a+ 3 +

√
3

√
x− a+ 3 +

√
3

[1p]

= lim
x→a

(x− a)(
√
x− a+ 3 +

√
3)

x− a
[1p]

= 2
√

3 [1p]

[2p] 1. b) For which real value p is de function

f(x) =


px als x ≤ a

x− a
√
x− a+ 3−

√
3

als x > a

continuous in every x?

Remark that f(x) is continuous at every x 6= a [1/2 p]



Continuity at x = a requires

lim
x→a−

f(x) = lim
x→a+

f(x) = f(a) [1/2p]

Therefore
pa = 2

√
3 = pa [1/2p]

Hence

p =
2
√

3

a
[1/2p]

The case a = 0 is not part of the exercise.

[3p] 2. a) The function f is given by f(x) = sin(cos(x)).

[2p] 2. a) Determine f ′(x).

Note
d

dx
(sin(x)) = cos(x) and

d

dx
(cos(x)) = − sin(x) [1/2p]

With the chain rule

d

dx
(sin(cos(x)) = cos(cos(x)) · (− sin(x)) [1p]

yielding

f ′(x) = − sin(x) cos(cos(x)) [1/2p]

Alternatively; answering directly and correctly using the chain rule gives full score
as well

[2p] 2. b) Determine the linearisation of f(x) in x = π/4.

We note that

f(π/4) = sin(
1

2

√
2) and f ′(π/4) = −1

2

√
2 cos(

1

2

√
2) [1p]

The linearisation L(x) may be written as

L(x) = sin(
1

2

√
2)− 1

2

√
2 cos(

1

2

√
2) · (x− π

4
) [1p]



[4p] 3. a) Determine all extreme values (global and local) of the function f(x) = xe−2x on
the interval (0, 4].

Candidate extreme values are located at critical points

f ′(x) = 0 ↔ e−2x − 2xe−2x = 0 ↔ x =
1

2
[1p]

We observe f ′(x) > 0 for x < 1/2 and f ′(x) < 0 for x > 1/2. Hence, f has a global
maximum at x = 1/2 given by f(1/2) = 1/(2e) [1p]

f has a minimum at boundary x = 4 given by f(4) = 4e−8 [1p]

This minimum is local, not global, since

lim
x→0+

f(x) = 0 [1p]

[3p] 4. a) Given

f(x, y) =


x2 + y2

x2 + y4
als (x, y) 6= (0, 0)

0 als (x, y) = (0, 0)

[2p] 4. a) Is f continuous in (0, 0)?

f is continuous at (0, 0) only in case

lim
(x,y)→(0,0)

f(x, y) = 0 [1/2p]

But this limit does not exist; for example, if (x, y) is tending to (0, 0) along the
y-axis we have [1/2 p]

lim
y→0

0 + y2

0 + y4
= lim

y→0

1

y2
=∞ [1/2p]

Since this limit clearly is not 0, f is not continuous at (0, 0) [1/2 p]

[3p] 4. b) Determine the equation for the tangent plane to the graph of f(x, y) at the point
(2, 1, 1).

We compute

∂

∂x

(
f(x, y)

)
=

2x(y4 − y2)
(x2 + y4)2

;
∂

∂x

(
f(2, 1)

)
= 0 [1p]



and
∂

∂y

(
f(x, y)

)
=

2yx2 − 2y5 − 4y3x2

(x2 + y4)2
;

∂

∂y

(
f(2, 1)

)
= −2

5
[1p]

Hence, the equation for the tangent plane is

z = f(2, 1) + 0 · (x− 2)− 2

5
· (y − 1) [1/2p]

i.e., with f(2, 1) = 1 we find

z =
7

5
− 2

5
y [1/2p]

[3p] 5. a) Given is the function f(x) = x3 − 2/x for 1 ≤ x ≤ 3. We divide the interval [1, 3]
in n equal sub-intervals. Give the expression for the Riemann sum of the function
f in case we choose the right-most point of each sub-interval for evaluate f .

Riemann sum wtih step size h = 2/n

n∑
k=1

f(right-hand boundary of k-th subinterval) · 2

n
[1p]

With

right-hand boundary of k-th subinterval = xk = 1 + k · 2

n
[1p]

yields as expression

n∑
k=1

(
(1 +

2k

n
)3 − 2

1 + 2k
n

)
· 2

n
[1p]

There is no need to simplify this further.

[3p] 6. a) Determine
dy

dx
in case

y(x) =

x2∫
x

cos(t3) dt



Splitting up the integral

y(x) =

∫ x2

0
cos(t3)dt−

∫ x

0
cos(t3)dt [1p]

we find

dy

dx
= cos((x2)3) · 2x− cos(x3) · 1 [3/2p]

= 2x cos(x6)− cos(x3) [1/2p]

Also full scores if dy/dx is written down directly.

[2p] 7. a) Compute ∫
x2 ln(2x) dx

Integration by parts:∫
x2 ln(2x)dx =

∫
ln(2x)d(

1

3
x3) [1/2p]

=
1

3
x3 ln(2x)−

∫
1

3
x3d ln(2x) [1/2p]

=
1

3
x3 ln(2x)−

∫
1

3
x2dx [1/2p]

=
1

3
x3 ln(2x)− 1

9
x3 + C [1/2p]

Alternatively, not explicitly using differentials∫
x2 ln(2x)dx =

1

3
x3 ln(2x)−

∫
1

3
x3
(1

x

)
dx [1p]

=
1

3
x3 ln(2x)−

∫
1

3
x2dx [1/2p]

=
1

3
x3 ln(2x)− 1

9
x3 + C [1/2p]

[2p] 7. b) Given is sinh(x) = (ex − e−x)/2. Compute

1∫
−1

sinh(t) dt



If a student recognizes that sinh is an odd function (sinh(−t) = − sinh(t)) and
concludes that the integral is 0 then full score.

Altenative: ∫ 1

−1

et − e−t

2
dt =

[et + e−t

2

]1
−1

[3/2p]

=
e1 + e−1

2
− e−1 + e1

2
= 0 [1/2p]

In the first line: [1 p] for a correct antiderivative and [1/2 p] for the correct inte-
gration boundaries.

[3p] 7. c) Compute ∫ ∞
0

e−x

1 + e−2x
dx

Note ∫ ∞
0

e−x

1 + e−2x
dx = lim

a→∞

∫ a

0

e−x

1 + e−2x
dx [1/2p]

Finding an antidervative via substitution e−x = u∫
e−x

1 + e−2x
dx =

∫
−du

1 + u2
= − tan−1(u) = − tan−1(e−x) [1p]

Hence,

lim
a→∞

(
− tan−1(e−a) + tan−1(e0)

)
[1/2p]

= − tan−1(0) + tan−1(1) = 0 +
π

4
=
π

4
[1p]

[2p] 8. a) Compute
∞∑
k=1

4
(2

3

)k



This is a geometric series with first term 8/3 and ratio 2/3 [1 p]

Hence

∞∑
k=1

4
(2

3

)k
=

first term

1− ratio
=

8/3

1/3
= 8 [1p]

[3p] 8. b) Determine the McLaurin series for 1/(1 − 2x)2 by differentiating the geometric
series

∑∞
n=0(2x)n.

∑∞
n=0(2x)n converges if |2x| < 1, so −1/2 < x < 1/2 [1/2 p]

For these x we have

1

1− 2x
= 1 + 2x+ (2x)2 + ... [1/2p]

Hence

d

dx
:

2

(1− 2x)2
= 0 + 2 + 2(2x)1 · 2 + ...+ n(2x)n−1 · 2 + ... [1p]

We conclude

1

(1− 2x)2
=
∞∑
n=1

n(2x)n−1 [1p]

Total: 36 points


