Course : Mathematics B2 (Newton)

Date : January 13, 2016
Time : 13.45-15.45

Motivate all answers and calculations.

The use of electronic devices is not permitted.
[3p] 1. a) Show by computation that for positive $a \in \mathbb{R}$

$$
\lim _{x \rightarrow a} \frac{x-a}{\sqrt{x-a+3}-\sqrt{3}}=2 \sqrt{3}
$$

Use l'Hopital's rule	$[1 / 2 \mathrm{p}]$
and check ' $0 / 0$	
$1 / 2 \mathrm{p}]$	

Then

$$
\begin{array}{rlr}
\lim _{x \rightarrow a} & \frac{1}{\frac{1}{2 \sqrt{x-a}+3}} & {[3 / 2 p]} \\
& 2 \sqrt{3} & {[1 / 2 p]}
\end{array}
$$

Alternatively, 'square root trick'

$$
\begin{align*}
& \lim _{x \rightarrow a} \frac{x-a}{\sqrt{x-a+3}-\sqrt{3}} \cdot \frac{\sqrt{x-a+3}+\sqrt{3}}{\sqrt{x-a+3}+\sqrt{3}} \\
= & \lim _{x \rightarrow a} \frac{(x-a)(\sqrt{x-a+3}+\sqrt{3})}{x-a} \tag{1p}\\
= & 2 \sqrt{3} \tag{1p}
\end{align*}
$$

b) For which real value p is de function

$$
f(x)=\left\{\begin{array}{lll}
p x & \text { als } & x \leq a \\
\frac{x-a}{\sqrt{x-a+3}-\sqrt{3}} & \text { als } & x>a
\end{array}\right.
$$

continuous in every x ?

Remark that $f(x)$ is continuous at every $x \neq a$

Continuity at $x=a$ requires

$$
\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=f(a) \quad[1 / 2 p]
$$

Therefore

$$
p a=2 \sqrt{3}=p a \quad[1 / 2 p]
$$

Hence

$$
\begin{equation*}
p=\frac{2 \sqrt{3}}{a} \tag{1/2p}
\end{equation*}
$$

The case $a=0$ is not part of the exercise.
2. The function f is given by $f(x)=\sin (\cos (x))$.
a) Determine $f^{\prime}(x)$.

Note

$$
\frac{d}{d x}(\sin (x))=\cos (x) \quad \text { and } \quad \frac{d}{d x}(\cos (x))=-\sin (x) \quad[1 / 2 p]
$$

With the chain rule

$$
\begin{equation*}
\frac{d}{d x}(\sin (\cos (x))=\cos (\cos (x)) \cdot(-\sin (x)) \tag{1p}
\end{equation*}
$$

yielding

$$
\begin{equation*}
f^{\prime}(x)=-\sin (x) \cos (\cos (x)) \tag{1/2p}
\end{equation*}
$$

Alternatively; answering directly and correctly using the chain rule gives full score as well
b) Determine the linearisation of $f(x)$ in $x=\pi / 4$.

We note that

$$
f(\pi / 4)=\sin \left(\frac{1}{2} \sqrt{2}\right) \quad \text { and } \quad f^{\prime}(\pi / 4)=-\frac{1}{2} \sqrt{2} \cos \left(\frac{1}{2} \sqrt{2}\right) \quad[1 p]
$$

The linearisation $L(x)$ may be written as

$$
L(x)=\sin \left(\frac{1}{2} \sqrt{2}\right)-\frac{1}{2} \sqrt{2} \cos \left(\frac{1}{2} \sqrt{2}\right) \cdot\left(x-\frac{\pi}{4}\right)
$$

[4p] 3. Determine all extreme values (global and local) of the function $f(x)=x e^{-2 x}$ on the interval $(0,4]$.

Candidate extreme values are located at critical points

$$
\begin{equation*}
f^{\prime}(x)=0 \quad \leftrightarrow \quad e^{-2 x}-2 x e^{-2 x}=0 \quad \leftrightarrow \quad x=\frac{1}{2} \tag{1p}
\end{equation*}
$$

We observe $f^{\prime}(x)>0$ for $x<1 / 2$ and $f^{\prime}(x)<0$ for $x>1 / 2$. Hence, f has a global maximum at $x=1 / 2$ given by $f(1 / 2)=1 /(2 e)$
f has a minimum at boundary $x=4$ given by $f(4)=4 e^{-8}$
This minimum is local, not global, since

$$
\begin{equation*}
\lim _{x \rightarrow 0^{+}} f(x)=0 \tag{1p}
\end{equation*}
$$

4. Given

$$
f(x, y)=\left\{\begin{array}{lll}
\frac{x^{2}+y^{2}}{x^{2}+y^{4}} & \text { als } & (x, y) \neq(0,0) \\
0 & \text { als } & (x, y)=(0,0)
\end{array}\right.
$$

a) Is f continuous in $(0,0)$?
f is continuous at $(0,0)$ only in case

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0
$$

But this limit does not exist; for example, if (x, y) is tending to $(0,0)$ along the y-axis we have

$$
\begin{equation*}
\lim _{y \rightarrow 0} \frac{0+y^{2}}{0+y^{4}}=\lim _{y \rightarrow 0} \frac{1}{y^{2}}=\infty \tag{1/2p}
\end{equation*}
$$

Since this limit clearly is not $0, f$ is not continuous at $(0,0)$ [1/2 p]
b) Determine the equation for the tangent plane to the graph of $f(x, y)$ at the point $(2,1,1)$.

We compute

$$
\frac{\partial}{\partial x}(f(x, y))=\frac{2 x\left(y^{4}-y^{2}\right)}{\left(x^{2}+y^{4}\right)^{2}} ; \quad \frac{\partial}{\partial x}(f(2,1))=0 \quad[1 p]
$$

and

$$
\frac{\partial}{\partial y}(f(x, y))=\frac{2 y x^{2}-2 y^{5}-4 y^{3} x^{2}}{\left(x^{2}+y^{4}\right)^{2}} ; \quad \frac{\partial}{\partial y}(f(2,1))=-\frac{2}{5} \quad[1 p]
$$

Hence, the equation for the tangent plane is

$$
z=f(2,1)+0 \cdot(x-2)-\frac{2}{5} \cdot(y-1)
$$

$$
[1 / 2 p]
$$

i.e., with $f(2,1)=1$ we find

$$
\begin{equation*}
z=\frac{7}{5}-\frac{2}{5} y \tag{1/2p}
\end{equation*}
$$

[3p] 5. a) Given is the function $f(x)=x^{3}-2 / x$ for $1 \leq x \leq 3$. We divide the interval $[1,3]$ in n equal sub-intervals. Give the expression for the Riemann sum of the function f in case we choose the right-most point of each sub-interval for evaluate f.

Riemann sum wtih step size $h=2 / n$

$$
\sum_{k=1}^{n} f\left(\text { right-hand boundary of } k \text {-th subinterval) } \cdot \frac{2}{n}\right.
$$

With

$$
\text { right-hand boundary of } k \text {-th subinterval }=x_{k}=1+k \cdot \frac{2}{n}
$$

yields as expression

$$
\begin{equation*}
\sum_{k=1}^{n}\left(\left(1+\frac{2 k}{n}\right)^{3}-\frac{2}{1+\frac{2 k}{n}}\right) \cdot \frac{2}{n} \tag{1p}
\end{equation*}
$$

There is no need to simplify this further.
[3p] 6. Determine $\frac{d y}{d x}$ in case

$$
y(x)=\int_{x}^{x^{2}} \cos \left(t^{3}\right) \mathrm{d} t
$$

Splitting up the integral

$$
y(x)=\int_{0}^{x^{2}} \cos \left(t^{3}\right) d t-\int_{0}^{x} \cos \left(t^{3}\right) d t \quad[1 p]
$$

we find

$$
\begin{aligned}
\frac{d y}{d x} & =\cos \left(\left(x^{2}\right)^{3}\right) \cdot 2 x-\cos \left(x^{3}\right) \cdot 1 & & {[3 / 2 p] } \\
& =2 x \cos \left(x^{6}\right)-\cos \left(x^{3}\right) & & {[1 / 2 p] }
\end{aligned}
$$

Also full scores if $d y / d x$ is written down directly.
[2p] 7. a) Compute

$$
\int x^{2} \ln (2 x) d x
$$

Integration by parts:

$$
\begin{aligned}
\int x^{2} \ln (2 x) d x & =\int \ln (2 x) d\left(\frac{1}{3} x^{3}\right) \quad[1 / 2 p] \\
& =\frac{1}{3} x^{3} \ln (2 x)-\int \frac{1}{3} x^{3} d \ln (2 x) \quad[1 / 2 p] \\
& =\frac{1}{3} x^{3} \ln (2 x)-\int \frac{1}{3} x^{2} d x \quad[1 / 2 p] \\
& =\frac{1}{3} x^{3} \ln (2 x)-\frac{1}{9} x^{3}+C \quad[1 / 2 p]
\end{aligned}
$$

Alternatively, not explicitly using differentials

$$
\begin{array}{rlr}
\int x^{2} \ln (2 x) d x & =\frac{1}{3} x^{3} \ln (2 x)-\int \frac{1}{3} x^{3}\left(\frac{1}{x}\right) d x & {[1 p]} \\
& =\frac{1}{3} x^{3} \ln (2 x)-\int \frac{1}{3} x^{2} d x & {[1 / 2 p]} \\
& =\frac{1}{3} x^{3} \ln (2 x)-\frac{1}{9} x^{3}+C & {[1 / 2 p]}
\end{array}
$$

[2p]
b) Given is $\sinh (x)=\left(e^{x}-e^{-x}\right) / 2$. Compute

$$
\int_{-1}^{1} \sinh (t) \mathrm{d} t
$$

If a student recognizes that \sinh is an odd function $(\sinh (-t)=-\sinh (t)$) and concludes that the integral is 0 then full score.

Altenative:

$$
\begin{array}{rlr}
\int_{-1}^{1} \frac{e^{t}-e^{-t}}{2} d t & =\left[\frac{e^{t}+e^{-t}}{2}\right]_{-1}^{1} & {[3 / 2 p]} \\
& =\frac{e^{1}+e^{-1}}{2}-\frac{e^{-1}+e^{1}}{2}=0 & {[1 / 2 p]}
\end{array}
$$

In the first line: $[1 \mathrm{p}]$ for a correct antiderivative and $[1 / 2 \mathrm{p}]$ for the correct integration boundaries.
[3p]
c) Compute

$$
\int_{0}^{\infty} \frac{e^{-x}}{1+e^{-2 x}} d x
$$

Note

$$
\int_{0}^{\infty} \frac{e^{-x}}{1+e^{-2 x}} d x=\lim _{a \rightarrow \infty} \int_{0}^{a} \frac{e^{-x}}{1+e^{-2 x}} d x \quad[1 / 2 p]
$$

Finding an antidervative via substitution $e^{-x}=u$

$$
\int \frac{e^{-x}}{1+e^{-2 x}} d x=\int \frac{-d u}{1+u^{2}}=-\tan ^{-1}(u)=-\tan ^{-1}\left(e^{-x}\right) \quad[1 p]
$$

Hence,

$$
\begin{align*}
\lim _{a \rightarrow \infty} & \left(-\tan ^{-1}\left(e^{-a}\right)+\tan ^{-1}\left(e^{0}\right)\right) \tag{1/2p}\\
= & -\tan ^{-1}(0)+\tan ^{-1}(1)=0+\frac{\pi}{4}=\frac{\pi}{4} \tag{1p}
\end{align*}
$$

$[2 \mathrm{p}]$ 8. a) Compute

$$
\sum_{k=1}^{\infty} 4\left(\frac{2}{3}\right)^{k}
$$

Hence

$$
\begin{equation*}
\sum_{k=1}^{\infty} 4\left(\frac{2}{3}\right)^{k}=\frac{\text { first term }}{1-\text { ratio }}=\frac{8 / 3}{1 / 3}=8 \tag{1p}
\end{equation*}
$$

[3p] b) Determine the McLaurin series for $1 /(1-2 x)^{2}$ by differentiating the geometric series $\sum_{n=0}^{\infty}(2 x)^{n}$.

$$
\sum_{n=0}^{\infty}(2 x)^{n} \text { converges if }|2 x|<1, \text { so }-1 / 2<x<1 / 2
$$

$$
[1 / 2 \mathrm{p}]
$$

For these x we have

$$
\begin{equation*}
\frac{1}{1-2 x}=1+2 x+(2 x)^{2}+\ldots \tag{1/2p}
\end{equation*}
$$

Hence

$$
\frac{d}{d x}: \quad \frac{2}{(1-2 x)^{2}}=0+2+2(2 x)^{1} \cdot 2+\ldots+n(2 x)^{n-1} \cdot 2+\ldots \quad[1 p]
$$

We conclude

$$
\begin{equation*}
\frac{1}{(1-2 x)^{2}}=\sum_{n=1}^{\infty} n(2 x)^{n-1} \tag{1p}
\end{equation*}
$$

Total: 36 points

