UNIVERSITY OF TWENTE

Department of Electrical Engineering, Mathematics and Computer Science
Solution exam Linear Algebra on Friday April 17, 2020, 13.45 - 15.45 hours.
2.

Given are two matrices:

$$
A=\left(\begin{array}{ccc}
1 & 1 & \alpha \\
1 & \beta & 2 \\
1 & 0 & 1
\end{array}\right) \quad B=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right)
$$

It is known that B is an echelon form of the matrix A. Determine α and β.
There are two ways to determine α and β. First we have Null $A=\operatorname{Null} B$ and

$$
\operatorname{Null} B=\operatorname{Span}\left\{\left(\begin{array}{c}
-1 \\
-2 \\
1
\end{array}\right)\right\}
$$

Hence

$$
\left(\begin{array}{lll}
1 & 1 & \alpha \\
1 & \beta & 2 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
-1 \\
-2 \\
1
\end{array}\right)=\mathbf{0}
$$

which yields $\alpha=3$ and $\beta=\frac{1}{2}$.
Alternatively:

$$
\begin{aligned}
A=\left(\begin{array}{ccc}
1 & 1 & \alpha \\
1 & \beta & 2 \\
1 & 0 & 1
\end{array}\right) & \sim\left(\begin{array}{ccc}
1 & 1 & \alpha \\
0 & \beta-1 & 2-\alpha \\
0 & -1 & 1-\alpha
\end{array}\right) \\
& \sim\left(\begin{array}{ccc}
1 & 1 & \alpha \\
0 & 1 & \alpha-1 \\
0 & \beta-1 & 2-\alpha
\end{array}\right) \\
& \sim\left(\begin{array}{ccc}
1 & 1 & \alpha \\
0 & 1 & \alpha-1 \\
0 & \beta-1 & 2-\alpha
\end{array}\right) \\
& \sim\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & \alpha-1 \\
0 & 0 & 2-\alpha-(\beta-1)(\alpha-1)
\end{array}\right)
\end{aligned}
$$

Since this should be similar to B we find $2-\alpha-(\beta-1)(\alpha-1)=0$ and $\alpha=3$. This then yields $\alpha=3$ and $\beta=\frac{1}{2}$.
3.
We know

$$
\left(\begin{array}{l}1 \\ 3 \\ \alpha\end{array}\right) \in \operatorname{Span}\left\{\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right),\left(\begin{array}{c}-2 \\ 1 \\ 2\end{array}\right)\right\}
$$

Determine α.

We should have:

$$
\lambda\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right)+\mu\left(\begin{array}{c}
-2 \\
1 \\
2
\end{array}\right)=\left(\begin{array}{l}
1 \\
3 \\
\alpha
\end{array}\right)
$$

The first two elements yield $\lambda-2 \mu=1$ and $\lambda+\mu=3$. This given $\lambda=\frac{7}{3}$ and $\mu=\frac{2}{3}$. The final element then yields:

$$
-\lambda+2 \mu=\alpha \quad \Longrightarrow \quad \alpha=-1
$$

4.

Given is that $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ is a basis of the subspace \mathcal{V}. Show that
$\left\{\mathrm{x}_{1}, \mathrm{x}_{1}+\mathrm{x}_{2}, \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}\right\}$ is also a basis of the subspace \mathcal{V}.
There are two issues: independence and spanning \mathcal{V}. We note that

$$
\alpha \mathbf{x}_{1}+\beta\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)+\gamma\left(\mathbf{x}_{1}+\mathbf{x}_{2}+\mathbf{x}_{3}\right)=\mathbf{0}
$$

yields:

$$
(\alpha+\beta+\gamma) \mathbf{x}_{1}+(\beta+\gamma) \mathbf{x}_{2}+\gamma \mathbf{x}_{3}=\mathbf{0}
$$

and independence of $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ yields

$$
\alpha+\beta+\gamma=0, \quad \beta+\gamma=0, \quad \gamma=0
$$

which yields $\alpha=\beta=\gamma=0$ and hence we have independence.
Next we note

$$
\begin{aligned}
& \mathbf{x}_{1}=\mathbf{x}_{1} \\
& \mathbf{x}_{2}=-\mathbf{x}_{1}+\left(\mathbf{x}_{1}+\mathrm{x}_{2}\right) \\
& \mathbf{x}_{3}=-\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)+\left(\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}\right)
\end{aligned}
$$

which proves $\mathcal{V} \subset \operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$. Trivially, we have $\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\} \subset \mathcal{V}$ and hence the argument is complete.
5.

Given are matrices A and B :

$$
A=\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right), \quad B=\left(\begin{array}{cc}
-2 & 1 \\
2 & -1
\end{array}\right)
$$

Find all matrices X such that $A X=B$.
If we choose:

$$
X=\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right)
$$

then $A X=B$ yields:

$$
\begin{aligned}
x_{1}-x_{3} & =-2 \\
x_{2}-x_{4} & =1 \\
-x_{1}+x_{3} & =2 \\
-x_{2}+x_{4} & =-1
\end{aligned}
$$

The third and fourth equation are the same as the first two equations and hence we find:

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right)+x_{3}\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right)
$$

or

$$
X=\left(\begin{array}{cc}
-2 & 1 \\
0 & 0
\end{array}\right)+\operatorname{Span}\left\{\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)\right\}
$$

6.

Given is the matrix

$$
A=\left(\begin{array}{lll}
1 & 2 & \alpha \\
1 & \alpha & 1 \\
1 & 1 & 1
\end{array}\right)
$$

with $\alpha \in \mathbb{R}$.
a) Find all $\alpha \in \mathbb{R}$ for which

$$
\text { Null } A=\operatorname{Span}\left\{\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)\right\}
$$

We must have

$$
A\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)=\mathbf{0}
$$

which yields $\alpha=1$. Strictly speaking we still need to show that $\operatorname{Null} A$ is not larger than the given span but this is obvious since for $\alpha=1$:

$$
A=\left(\begin{array}{lll}
1 & 2 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & -1 & 0 \\
0 & -1 & 0
\end{array}\right) \sim\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

b) Find all $\alpha \in \mathbb{R}$ for which

$$
\operatorname{Col} A=\operatorname{Span}\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\}
$$

We basically need to show that $\operatorname{Col} A=\mathbb{R}^{3}$. We have:

$$
\begin{aligned}
A=\left(\begin{array}{ccc}
1 & 2 & \alpha \\
1 & \alpha & 1 \\
1 & 1 & 1
\end{array}\right) & \sim\left(\begin{array}{ccc}
1 & 2 & \alpha \\
0 & \alpha-2 & 1-\alpha \\
0 & -1 & 1-\alpha
\end{array}\right) \\
& \sim\left(\begin{array}{ccc}
1 & 2 & \alpha \\
0 & -1 & 1-\alpha \\
0 & \alpha-2 & 1-\alpha
\end{array}\right) \\
& \sim\left(\begin{array}{ccc}
1 & 2 & \alpha \\
0 & 1 & \alpha-1 \\
0 & \alpha-2 & 1-\alpha
\end{array}\right) \\
& \sim\left(\begin{array}{ccc}
1 & 2 & \alpha \\
0 & 1 & \alpha-1 \\
0 & 0 & 1-\alpha-(\alpha-2)(\alpha-1)
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & 2 & \alpha \\
0 & 1 & \alpha-1 \\
0 & 0 & -(\alpha-1)^{2}
\end{array}\right)
\end{aligned}
$$

which shows that $\operatorname{Col} A=\mathbb{R}^{3}$ if $\alpha \neq 1$.
7.

Given is that for the matrix

$$
A=\left(\begin{array}{ccc}
3 & -2 & -2 \\
-1 & 1 & 2 \\
-4 & 3 & \alpha
\end{array}\right)
$$

the inverse is given by:

$$
A^{-1}=\frac{1}{3}\left(\begin{array}{ccc}
1 & 8 & -2 \\
-1 & 13 & -4 \\
1 & -1 & 1
\end{array}\right)
$$

Determine α.
We must have

$$
I=A^{-1} A=\frac{1}{3}\left(\begin{array}{ccc}
1 & 8 & -2 \\
-1 & 13 & -4 \\
1 & -1 & 1
\end{array}\right)\left(\begin{array}{ccc}
3 & -2 & -2 \\
-1 & 1 & 2 \\
-4 & 3 & \alpha
\end{array}\right)=\frac{1}{3}\left(\begin{array}{ccc}
3 & 0 & 14-2 \alpha \\
0 & 3 & 28-4 \alpha \\
0 & 0 & -4+\alpha
\end{array}\right)
$$

which yields $\alpha=7$.
8.

$$
\begin{aligned}
& \text { Given is the matrix } \\
& A=\left(\begin{array}{cccc}
5 & -1 & 3 & -1 \\
3 & 1 & 3 & -1 \\
2 & 2 & 3 & -1 \\
-3 & -4 & 1 & 8
\end{array}\right)
\end{aligned}
$$

Find all α for which

$$
\mathbf{x}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
\alpha
\end{array}\right)
$$

is an eigenvector of the matrix A.
We must have:

$$
\left(\begin{array}{cccc}
5 & -1 & 3 & -1 \\
3 & 1 & 3 & -1 \\
2 & 2 & 3 & -1 \\
-3 & -4 & 1 & 8
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1 \\
\alpha
\end{array}\right)=\lambda\left(\begin{array}{l}
1 \\
1 \\
1 \\
\alpha
\end{array}\right)
$$

which yields:

$$
\left(\begin{array}{c}
7-\alpha \\
7-\alpha \\
7-\alpha \\
-6+8 \alpha
\end{array}\right)=\lambda\left(\begin{array}{l}
1 \\
1 \\
1 \\
\alpha
\end{array}\right)
$$

The first three elements yield $\lambda=7-\alpha$. The final element yields:

$$
-6+8 \alpha=(7-\alpha) \alpha
$$

or

$$
\alpha^{2}+\alpha-6=0
$$

This gives $\alpha=-3$ or $\alpha=2$.
9.

Given is a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that:

$$
T\binom{1}{2}=\binom{2}{1}, \quad T^{2}\binom{1}{2}=2\binom{2}{1}
$$

a) Determine the representation matrix of T.

Substituting the first in the second equation we find:

$$
T\binom{2}{1}=\binom{4}{2}
$$

We have

$$
\binom{1}{0}=-\frac{1}{3}\binom{1}{2}+\frac{2}{3}\binom{2}{1}
$$

and

$$
\binom{0}{1}=\frac{2}{3}\binom{1}{2}-\frac{1}{3}\binom{2}{1}
$$

but then

$$
T\binom{1}{0}=\binom{2}{1} \quad T\binom{0}{1}=\binom{0}{0}
$$

Hence the representation matrix is:

$$
\left(\begin{array}{ll}
2 & 0 \\
1 & 0
\end{array}\right)
$$

b) Determine whether the transformation T is onto.

We clearly have

$$
\operatorname{Im} T=\operatorname{Span}\left\{\binom{2}{1}\right\}
$$

and hence T is not onto.

