UNIVERSITEIT TWENTE.

Examination Operating Systems
8 April 2014

Read these instructions and the questions carefully! If the questions are unclear, you can ask for
clarification.

Please make sure that your name and student number appear on all answer sheets.
Your working time begins at 8:45 and ends at 12:15.

Try to give precise answers using appropriate terminology. For multiple-choice questions there
may be more than one correct answer; all of these must be selected for full marks.

Unreadable or extremely long answers will not be marked. Multiple-choice answers that are
ambiguous will not be marked either.

You are only allowed to use your writing materials during the exam.

All answers must be given in English.

Chapter 1:

Nr:

1.2

A compiler generates code that pushes the arguments to a function onto the stack, such
that the stack pointer always points to the location just before the first argument:

Arg 2

Arg1l

RBP SP

RA

(a) Could this be a problem for code running in user space when an interrupt
arrives? Why?

(b) Could this be a problem for code running in kernel space when an interrupt
arrives? Why?

4 credits

Chapter 2:

Nr:

2.8

Given the following C-program fragment:

#define N 41

int main(int argc, char * argv([]) {

if (argc >= 3) {
FILE *from = fopen(argv[l], "r"):
FILE *to = fopen(argv([2], "w");
char buf[N];
while (fgets(buf,N, from) != NULL) {

fpubsibnat, tely Epute(™\n'*, ko]

}
fclose (from) ;
fclose (to);
return O;

} else {
printf ("usage %s from to\n", argv[0]);
return 1;

(a) What is the output of the program when the input is a file with one line
consisting of 120 characters + one newline character? (Hint: fgets reads
everything, upto and including the next newline character into the buffer).

(b) Is it necessary to go to the disk for every gets call? Explain

7 credits

Chapter 4:

Nr:

4.10

Consider the C program fragment below:

void *tproc(void *arg) {
static char *argv([]={"echo","Foco",NULL};
execv ("/bin/echo", argv) ;

}

int main(int argc, char *argv[]) {
int targ = 0;
pthread t tid;
pthread create(&tid, NULL, &tproc, &targ):;
printf ("%s\n", argv(0]);
pthread join(tid,NULL);
return 0;

(a) How many threads will be created when this program is run?
(b) What is the output of the program? Explain.
(c) Is the output always the same? Explain.

7 credits

Chapter 5 (Silberschatz), 9 (Stallings):

Nr: | 5.9

Q: | Consider the C program fragment below:

#define N 8
#define M 1000000
typedef enum { False=0, True=1 } bool ;

ve1d FEproo(veid fpcr) |
int 'k, i = *{((int *) ptr):
int bygn = sched getepu();
printf ("thread %d on CPU %d\n",i,bgn);
for (k=0;k<M; k++) {
int now = sched getcpu();

if(bgn !'= now) {
printf ("thread %d moved to CPU %d\n",i,now);
break;

}
sched yield(); /* Schedule another thread */

}
pthread exit(0);

int main(int argc, char * argv[]) {

int i, Targ[N];
pthread t thread([N];
for(i=0; i < N; i++) {

targl[i] = 1i;

pthread create(&thread[i], NULL,

&tproc, (void *) &targlil):

}
for(i=0; 1 < N; i++) {

pthread join(thread[i], NULL);
}

return 0O;

(a) Give an example of the output of the program on a dual core machine.

(b) Can a thread be run on different CPUs? If yes, what would the reason for the
scheduler to move threads around? If no why not?

(c) Does Linux offer a library call to lock a thread to a specific CPU?

C: | 7 credits

Chapter 6 (Silberschatz), 5 (Stallings):

Sp is the initial value of S

Nr: | 6.8
Q: | Asemaphore satisfies the following invariants:
S=20
S = Sp + #Signals - #Waits
where

#Signals is the number of executed Signal(S) operations
#Waits is the number of completed Wait(S) operations

Given the two concurrent processes below, prove the mutual exclusion property, using
the two semaphore invariants. Sy is initialised to 1.

while (true) {

while (true) {

al: Nen Critical Sectign 1; aZ: Non Critical Sectien 2;
bl: Wait (S8); B2 Wait(S);
els Critical Section 1j g2: Critical Bectlon 23
dl: Sighal(s) d2: Signal (S) :
} }
C: | 4 credits

Nr:

6.9

Given the Java monitor for the bounded buffer below:

1 class Buffer/{

2 private int []B;

3 private int Cnt = 0, In = 0, Out = 0;
4

5 Buffer (int size) {

6 B = new int[size];

& }

8

8 public synchronized void Put(int 1) {
10 while (Cnt == B.length) {

T try{ wait(); 1}

12 catch(InterruptedException e)
1.5 finally{ }

14 }

1.5 B[In] = 41;
16 In = (In + 1) % B.length;
17 Cnt++;

18 notify();

19 }
20
21 public synchronized int Get () {
22 while (Cnt == 0) {
23 try{ wait(); }
24 catch (InterruptedException e)
25 finally{ }
26 }
27 imE 3. = B[Outl].;
28 Qut = (Out + 1) % B.length;
29 Crit==7
30 notify();
31 return i;
32 }

33 |}

(@) What is the purpose of the while loops at lines 10-14 and 22-267?
(b) Why does C not offer monitors, like Java?

{

}

7 credits

Chapter 7 (Silberschatz), 6 (Stallings):

Nr: | 7.4
Q: [Consider the C program fragment below:
7 #define N 2
8 f#define P 3
9 sem t Room;
10 aem. T Fork[P];
11 void *tphilosopher(void *ptr) {
12 int i, k = *((int *) ptr);
13 for(i = 1; i <= N; i++) {
14 printf ("%*cThink %d $d\n", k*4, " ', k, 1);:
15 sem wait (&Room) ;
16 sem wait (&Forkl[k]) ;
17 sem wait (&Fork[(k+1) % P]) ;
18 printf("%*cEat %d d\n", k*4; ' T; k, i):
19 sem _post (&Fork[k]) ;
20 sem post(&Fork[(k+1) % P]) ;
21 sem post (&Room) ;
22 }
23 pthread exit(0);
24 '}
25
26 int main(int argc, char * argv[]) {
27 int i, targ[P];
28 pthread t thread[P];
29 sem init(&Room, 0, P-1);
30 for (i=0;i<P;i++) {
31 sem init(&Forkli]l:; 8; 1)4
32 }
33 for(i=0;i<P;i++) {
34 targl[i] = 1i;
35 pthread create(&thread[i], NULL,
36 &tphilosopher, (void *)} &targlil]):
37 1
38 for(i=0;i<P;i++) {
39 pthread join(thread[i], NULL);
40 1
41 return 0;
42 }
(a) Give an example of the output of the program.
(b) What would happen if the Room semaphore was left out? Why?
(c) Does the order of the wait calls in lines 15-17 matter? Why?
C: | 7 credits

Nr:

7:5

Given the simplified version of Dijkstra’s Bankers Algorithm and associated state for a
system with three processes and four resources below:

typedef enum { False=0, True=1 } bool ;

fdefine P 3
#define R 4

int reQuest[P][R] = {
Fxp0%) {0;1;0,1};
/*pl*/ {0,0,0,1},
Frp2%7 40,1;0;11 3.

int Usage[P] [R] = {
/*p0*/ {0;0;0,0},
/¥plxs {0,0,1,0%,
A¥p2rl 11;1;1.0% ¥

int Available[R] = {050, 0;1};

{

bool greater(int X[],int Y[])
(X[J1>Y[]j]) return True ;

for(int j=0;j<R;j++) if
return False ;

}

#define copy(X,Y) for(int j=0;j<R;j++) X[Jl=Y[]]:
#define add(X,Y) for(int j=0;j<R;j++) X[JI1=X[j]1+Y[]]:

int main() {
int Temp[R], Zero[R] = {0};
copy (Temp, Available);
for(int p=0; p<P; p++) {
if (greater (Usage[pl,Zero)) {
if (greater (reQuest([p]l, Temp))
printf ("deadlock %d\n",p
} else {
printf("no deadlock %d\n",p):
add (Temp, Usage[p]) ;

r

{
)

}
} else {
printf ("no deadlock %d\n",p):
}
}

return 0;

(a) Which of the three processes p0 .. p2 are deadlocked? Explain.
(b) In what sense has the algorithm been simplified?

7 credits

Chapter 9 (Silberschatz), 8 (Stallings):

Nr:

9.7

Consider the C-program fragment with numbered lines below:

1 int main(int argc, char *argv[]) {
2 int in = open(argv[l], O RDONLY):;
3 int out = open(argv([2],
4 O_RDWR|O _CREAT|O TRUNC, 0666);
5 size t sz = lseek(in, 0, SEEK END);
6 lseek(out, sz - 1, SEEK SET);
7 write (euty "™NOM: 193
8 void *src = mmap (NULL, sz,
9 PROT READ, MAP PRIVATE, in, 0};
10 void *tgt = mmap (NULL, sz,
11 PROT WRITE, MAP SHARED, out, 0);
12 memepy tgt,; src, 82Z);
13 munmap (src, sz);
14 munmap (tgt, sz);
15 close(in) ;
16 close (out) ;
17 return 0;
18 1}

The system call trace of the program obtained from “strace ./a.out Mmap.c Foo” lists
the following system calls:

open("Mmap.c", O RDONLY) =3
open ("Foo", O RDWR|O CREAT|O TRUNC, 0666) = 4
lseek (3, 0, SEEK END) = 1393
lseek (4, 1392, SEEK SET) = 1392
write (4, "\O", 1) =1

mmap (NULL, 1393, PROT READ, MAP PRIVATE, 3, 0) =
0x7£1e10da0000
mmap (NULL, 1393, PROT WRITE, MAP SHARED, 4, 0) =
0x7f1e10d9£000

munmap (0x7£1e10da0000, 1393) =0
munmap (0x7£1e10d9£f000, 1393) =0
close (3) =0
close (4) =0

(a) How many bytes long is the file Mmap.c?

(b) Why is there no read system call reading the Mmap.c file?
(c) Why is there no write system call writing out the file Foo?
(d) What is the purpose of the memcpy function?

(e) Why does the memcpy function not show up in the strace?

7 credits

Chapter 11 (Silberschatz), 12 (Stallings):

Nr: [11.7

1 /bin/rm a b c

2 echo "Hello World" >a
3 lInab

4 1s —-i a b

5 rm a

6 cat b

7 1In b a

8 1ls -iab

S In -s a c

10 cat c

11 /bin/rm a b

12 1s -i ¢

13 eat e

14 echo "Hello World" >a
15 1s =i a e

16 cat c

filename)
(b) What is the output of each of the four cat commands?

Q: |Consider the Linux shell script below (with line numbers added for ease of reference):

(a) What is the output of each of the four Is commands? (Is —i prints the inode and the

C: |7 credits

Nr:

11.10

Consider the C-program fragment below:

int main(int argc, char * argv[]) {
DIR *dirp = opendir(argv([1l]) ;
if { dirp != NULL) {
struct dirent *dp
while (dp = readdir(dirp)) {
char t;
switch(dp->d type) {

case DT BLK t = 'b' ; break ;
case DT CHR L = e’ ¢ break: j
case DT DIR t = 'd'" ; break ;
case UT FIEQ & 'p' ; break ;
case DT LNK t = T'l" ; break ;
case DT _REG t = "' ; break ;
case DT SOCK t = 's' ; break ;
case DT UNKNOWN t = 'u' ; break ;
default t="'2'";

}
printf ("%8d %c $%s\n",
(int)dp->d_ino, t, dp->d name);
}
closedir(dirp});
1

return 0;

(@) When does the while loop terminate? Explain.
(b) What type of file would be labelled with a ‘b’?
(c) What type of file would be labelled with a ‘c’?
(d) What is printed by dp->d_ino?
(e) If the output contains the two lines below, which directory has been given as the
first argument to the program?
2 d
2 d

7 credits

Chapter 14 (Silberschatz), 15 (Stallings):

Nr: |14.5

Q: (@) Why is an access control matrix typically sparse?

(b) What is an access control list?

(c) Why does the system have to manage capabilities? (Hint: what would go wrong if
users could manipulate capabilities?)

C: |3 credits

Chapter 15 (Silberschatz), 14 (Stallings):

Nr: 115.6
Q: (a) Define confidentiality
(b) Define integrity
(c) Define availability
(d) These three terms together are usually referred to as the ?
C: |2 credits
Nr: |15.7
Q: |Consider the C program fragment below (due to Ken Thompson, 1984):

char s[] = {
SRR
|O1’
l\nf’
f}l’
l‘;l,
& 220 lines deleted here
0
)i
/*

* The string s is a

* representation of the body
* of this program frcom '0'

* te the end.

*/

main()

{

il g sl -

printf{™charivts[1 = [(\a"):
for(i=0; s[i];: i++)

prITt " \NESdy NV s[il1)%
printf ("&s",s) ;

(a) What is the output of the program?
(b) For what purpose are more sophisticated versions of this type of program used?

7 credits

Nr:

15.8

Consider the C program fragment below:

vold foo(const char *fr) {
char tel[2];
gticpy(to; fLr).:

}

int main(int argc, char * argv[]) {

char fr[] = "abcdefghijklmnopgrstuvwxyz";
chat toe[2] &
strepy(to,Lr)
printf ("to=%p=
fr);

.
r

=
C]

s\nfr=%p=%s\n", (void*)to, to, (void*)fr,

fflush (stdout) ;
foo (to) ;
return O;

(a) What is the output of the program? Why?
(b) For what purpose are more sophisticated versions of this type of program used?

7 credits

Lab 2014

Nr: | LAB2014.1

Q: | Answer the following questions about VTreeFS:

(a) What are the main features of the VTreeFsS library?

(b) What is an inode?

(c) What is the “inode number” used for?

(d) What happens if the VTreeFS is running out of inodes?

C: | 6 credits

