
Universiteit Twente Semester 2016-2017
Afdeling Informatica, Faculteit EWI Tentamen
donderdag 16 maart 2017

Answers

MOD7:ADS

1
10 pt

Consider the following algorithm (with * for multiplication, // for integer division (eg.
7//2 = 3), and **2 for square):

def func(n):

if n==0:

return 1

else:

if n<4:

return n

else:

return 2*func(n//4) + 6 + func(n//4)**2

1. Give a recursive expression for the time complexity of this algorithm, expressed
in the number of arithmetical operations.

Answer:
Note that func(n div 4) is called twice. Furthermore, 6 aritmetical opera-
tions are used (a multiplication, two additions, two divisions, and a square),
so the recurrence relation becomes T (n) = 2 · T (bn/4c) + 6.

2. What is the complexity class of this algorithm?

Answer:

Assume n is a power of 4 (just for convenience) so T (n) = 2 ·T (n/4)+6. We
apply the Master theorem with b = 2 and c = 4, so E = log2/log4 = 1/2.
Now 6 ∈ O(n1/2−ε) for some ε, so we have case 1, so T (n) ∈ Θ(n1/2).

2a
5 pt

Suppose in a heap you update an arbitrary element (say with index i). Describe (in
words or in pseudocode) an algorithm that repairs (if necessary) the heap property.

Answer:
Suppose the heap is given by array E. There are three possibilities:

1

1. E is still a heap; then you are ready.

2. The new value k of E[i] is bigger than its parent. Then swap E[i] with its
parent. Repeat this until k is in a position where it is smaller than its parent
(or it is the root); now you have again a heap/

3. The new value k of E[i] is smaller that its parent, but also bigger than one
of its children. Now call Heapify(E,i).

2b
5 pt

Given a binary search tree with positive keys, and a key k that does not occur in the
tree. Give a function that yields: the biggest key in the tree, smaller than k (or zero if
there is no such key). Hint: traverse the tree as if you want to insert k, and keep track
of what you encounter.

Answer:

pred(T,k):

x = T.root

max = 0

while x != null:

if k < x.key:

x = x.left

else:

max = x.key

x = x.right

return max

3
10 pt

Suppose you want to put songs on a cd. Suppose you can choose from n songs, where
song i takes ti minutes. You want to fill the cd as much as possible, which means that
you want to put as much minutes of music on it as possible. Assume a cd may contain
at most 80 minutes of music.

1. suppose C(i, k) indicates the minimal remainder (so the amount of unused min-
utes) if still k minutes need to be filled with songs chosen from the set {1, . . . , i}.
Explain that

C(i, k) = min{C(i− 1, k), C(i− 1, k − ti)}

2

Answer:

Either you do not choose song i, and then the remainder is C(i − 1, k), or
you do choose song i, and then the remainder is C(i− 1, k − ti). Now take
the minimum of these two options.

2. Give a polynomial algorithm, based on dynamic programming, that calculates
the maximal amount of minutes you can put on the cd.

Answer:

int cdchoice1(int[] t, int n)

{ for (k=0;k<=80;k++) C[0,k]=k;

for (i=1;i<=n;i++)

for (k=0;k<=80;k++)

if (k-t[i]<0) then C[i,k] = C[i-1,k]

else C[i,k] = min(C[i-1,k], C[i-1, k-t[i])

return 80-C[n,80]

}

3

