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see separate pdf’s.

Solutions: Discrete Mathematics

4. (a) Use the Euclidean Algorithm to compute gcd(1000, 444):

1000 = 2*444 + 112

444 = 3*112 + 108

112 = 1*108 + 4

108 = 27* 4 + 0

Hence gcd(1000, 444) = 4. We also know that gcd(1000, 444) = min{1000s+ 444t > 0 | s, t ∈
Z}. Because 2 < 4, the equation 1000s+ 444t = 2 cannot have a solution in Z.

(b) Assume that g := gcd(a, b)|c, which means that c = kg for some k ∈ Z. As g = min{xa+ yb >
0 | x, y ∈ Z}, we know that there exist x, y ∈ Z with g = xa+yb, hence c = kg = (kx)a+(ky)b,
and s := kx ∈ Z, t := ky ∈ Z.

5. (a) The characteristic polynomial of the corresponding homogeneous recurrence relation is x2 −
10x + 21 = (x − 3)(x − 7). The roots are x1 = 3 and x2 = 7. Hence the general solution to
the homogeneous recurrence relation is

a(h)n = c13n + c27n .

We use as the particular solution to the inhomogeneous recurrence relation

a(p)n = An3n ,

(because A3n would not be linearly independent). Plugging this into the recurrence relation
gives An3n − 10A(n − 1)3n−1 + 21A(n − 2)3n−2 = 60 · 3n for all n, so An3n(1 − 10

3 + 7
3 ) +

A3n( 10
3 −

14
3 ) = 60 · 3n, hence A = −45. Therefore, the general solution to the inhomogeneous

recurrence relation is
an = c13n + c27n − 45n3n .

Now we have a0 = 2 = c1 + c2, and a1 = −5 = 3c1 + 7c2 − 135 . This yields c1 = −29 and
c2 = 31, and the solution equals

an = −29 · 3n + 31 · 7n − 45n3n .

(b) Let akn be the number of strings (with the required properties) that end on letter k, then

an = a0n + a1n + a2n .

Now we see that a0n = an−1, a1n = a1n−1 + a2n−1, and a2n = a1n−1 + a2n−1. That yields

an = an−1 + (an−1 − a0n−1) + (an−1 − a0n−1) = 3an−1 − 2an−2 .

Finally, a1 = 31 = 3, a2 = 32 − 2(for 01 en 02) = 7, a3 = 33 − 3 · 4(for 01X and X01 and 02X
and X02) = 15(= 3 · 7− 2 · 3).

6. Let E(s) ⊆ δ(s) be the edges in δ(s) that have minimal weight (among the edges in δ(s)). Since
de ≥ 0 for all e ∈ E, for any edge e = {s, v} ∈ E(s), there can be no shorter (s, v)-path than {s, v}
itself. Hence E(s) ⊆ D(s). We claim that E(s) ∩ T 6= ∅ Assuming that E(s) ∩ T = ∅, pick any
e = {s, v} ∈ E(s), and consider the (unique) (s, v)-path PT (s, v) in T . Of course PT (s, v) must
contain some edge f ∈ δ(s), but df > de, because E(s) ∩ T = ∅. This would be contradicting the
path condition for minimum spanning trees, however. Therefore T∩E(s) 6= ∅, and also T∩D(s) 6= ∅.
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7. (a) Take G = K3,3 + {v} and connect v with any node of K3,3. This graph is not planar, because
it contains K3,3 as a subgraph. However, m = 10 and n = 7, hence m ≤ 2n − 4. This graph
is a counterexample to the claim.

(b) Proof: Consider any planar embedding of G. Observe that the closed walk along the boundary
of any region defined by the planar embedding of G has at least 4 edges (some edges might be
counted twice here). This because a bipartite graph has no cycles of odd length, hence also no
cycles of length 3. (Observe here that K2 would be a counterexample to this observation, which
is the reason to require that m > 1). Denote by fi the number of edges on the boundary of
region i, and let r be the number of regions of the planar embedding of G. Then 2m =

∑r
i=1 fi,

as each edge is counted exactly twice in the sum
∑r

i=1 fi. Also,
∑r

i=1 fi ≥ 4r as fi ≥ 4 for all
i = 1, . . . , r. Hence r ≤ 1

2m. Now recall the Euler formula for graph G, which says that

r = m− n+ 2 .

Therefore, 2 = n−m+ r ≤ n−m+ 1
2m = n− 1

2m. Hence m ≤ 2m− 4.

8. We can first compute the number of possibilities where everybody gets at least 10. This number is
equal to the coefficient of x50 in the generating function

f(x) = (x10 + x11 + · · · )3 = x30(1 + x+ x2 + · · · )3 = x30
1

(1− x)3
.

This number is therefore equal to the coefficient of x20 in

1

(1− x)3
.

That number equals (−1)20
(−3
20

)
=
(
22
20

)
= 231. Now in this count we still have those distributions

where all three get 16 or more, which need to be subtracted. This can either be calculated by hand,
as there are only 6 such possibilities: 16-16-18, 16-18-16, 18-16-16, 16-17-17, 17-16-17, 17-17,16.
Alternatively we compute the coefficient of x50 in the generating function

f(x) = (x16 + x11 + · · · )3 = x48(1 + x+ x2 + · · · )3 = x48
1

(1− x)3
.

This number is therefore equal to the coefficient of x2 in

1

(1− x)3
.

That number equals (−1)2
(−3

2

)
=
(
4
2

)
= 6. The answer is therefore 231-6=225.

9. (a) false. Consider K4, with all edges with equal weights, then there are two minimum spanning
trees which are the complement of each other, hence disjoint.

(b) false. Consider graph with three nodes {s, v, t} and edges (s, v), (v, t) with capacities c(s, v) = 1
and c(v, t) = 2. Then the only maximum flow falsifies the claim on edge (v, t).

(c) false. Consider graph with four nodes {s, u, v, t} and edges (s, u), (s, v), (u, t), (v, t) with weights
w(s, u) = 1 and w(u, t) = 6, w(s, v) = 3 and w(v, t) = 4, then there are two shortest (s, t)-paths
of length 7.

(d) true. For a proof, please refer to the tutorial sessions. Note that arguing via Kruskals’s
algorithm is not sufficient, even though Kruskal’s algorithm computes a unique spanning tree.
But potentially, there could be minimum spanning tres that can’t be computed by Kruskal’s
algorithm. . . The actual proof is: Assume there exist two different MST’s T1 and T2, then
there exists at least one edge e = {u, v} ∈ T1 \ T2. As in T2, u and v are also connected by
a unique path PT2

(u, v), we know by the path condition (for T2), that wf ≤ we for all edges
f ∈ PT2

(u, v), and since all weight are different, wf < we for all edges f ∈ PT2
(u, v). But now

we get a contradiction to T1 being a minimum spanning tree, because in the cut induced by
T1 − e, there exists at least one edge f ∈ PT2(u, v), which is cheaper than e, contradictiong
the cut condition for T1.
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