Discrete Mathematics for Computer Science, October 2, 2017 Solution/Correction standard

1. (a)
$$\forall_i \forall j \forall k [a_{ij} = a_{ik}]$$
 or $\forall_i \forall j \in \{1, \dots, n-1\} [a_{ij} = a_{i,j+1}]$. [2 pt]

(b)
$$\forall j \left[\exists_i (a_{ij} = 0) \land \exists k (a_{kj} = 1) \land \forall \ell (0 \le a_{\ell j} \le 1) \right].$$
 [4 pt]

For each expression that is not logically equivalent to the ones above: 0 pt.

2. ₍₁₎

(1)	q	Extra Premise
(2)	$p \lor r$	Premise
(3)	$\neg \neg p \lor r$	(2), L1
(4)	$\neg p \to r$	(3), L12
(5)	$p \to (\neg q \lor r)$	Premise
(6)	$\neg(\neg q \lor r) \to \neg p$	(5), L13
(7)	$\neg(\neg q \lor r) \to r$	(6),(4), R2
(8)	$\neg\neg(\neg q \lor r) \lor r$	(7), L12
(9)	$\neg q \lor (r \lor r)$	(8), L1,L4
(10)	$\neg q \lor r$	(9), L8
(11)	$\neg \neg q$	(1), L1
(12)	r	(11), R5

For each forgotten Law or Rule: -1 pt.

If deduction contains a step that is not logically correct: at most 1 pt for the entire exercise. Remark: Also R11 can be used, e.g, by first creating a T_0 :

(1) $p \lor r$ (Prem); (2) $(p \lor r) \land T_0$ ((1),L7); (3) T_0 ((2),L3,R7); (4) $r \lor \neg r$ ((3),L8); (5) $r \to r$ ((4),L3,L12); (6) $p \to (\neg q \lor r)$ (Prem). Now (6),(5),(1) and R11 imply $(\neg q \lor r) \lor r$. Then applying L4, L6 and L12 respectively leads to the conclusion $q \to r$.

- 3. Suppose A C = B C and C A = C B. We must show that A = B. [1 pt] We show that $A \subseteq B$ and $B \subseteq A$. [1 pt]
 - (i) Proof of $A \subseteq B$. Let $x \in A$. We distinguish the cases $x \in C$ and $x \notin C$. $\underline{Case 1}$: Suppose $x \in C$. Then $x \notin C - A$. So $x \notin C - B$. Then necessarily $x \in B$ (because $x \in C$ and $x \notin B$ would imply $x \in C - B$). $\underline{Case 2}$: Suppose $x \notin C$. Then $x \in A - C$. So $x \in B - C$. So again $x \in B$. From Case 1 and Case 2 we conclude $A \subseteq B$. [1 pt]

(ii) Proof of
$$B \subseteq A$$
.
This proof is analogous to part (i), by interhanging the roles of A and B. [1 pt]

[6 pt]