Discrete Mathematics for Computer Science, October 2, 2017 Solution/Correction standard

1. (a)

$$
\forall_{i} \forall j \forall k\left[a_{i j}=a_{i k}\right] \quad \text { or } \quad \forall_{i} \forall j \in\{1, \ldots, n-1\}\left[a_{i j}=a_{i, j+1}\right] .
$$

[2 pt]
(b)

$$
\begin{equation*}
\forall j\left[\exists_{i}\left(a_{i j}=0\right) \wedge \exists k\left(a_{k j}=1\right) \wedge \forall \ell\left(0 \leq a_{\ell j} \leq 1\right)\right] . \tag{4pt}
\end{equation*}
$$

For each expression that is not logically equivalent to the ones above: 0 pt .
2.

(1)	q	Extra Premise
(2)	$p \vee r$	Premise
(3)	$\neg \neg p \vee r$	(2), L1
(4)	$\neg p \rightarrow r$	(3), L12
(5)	$p \rightarrow(\neg q \vee r)$	Premise
(6)	$\neg(\neg q \vee r) \rightarrow \neg p$	(5), L13
(7) $\neg(\neg q \vee r) \rightarrow r$	(6),(4), R2	
(8) $\neg \neg(\neg q \vee r) \vee r$	(7), L12	
(9) $\neg q \vee(r \vee r)$	(8), L1,L4	
(10) $\neg q \vee r$	(9), L8	
(11) $\neg \neg q$	(1), L1	
(12) r	(11), R5	

For each forgotten Law or Rule: -1 pt . If deduction contains a step that is not logically correct: at most 1 pt for the entire exercise.
Remark: Also R11 can be used, e.g, by first creating a T_{0} :
(1) $p \vee r$ (Prem); (2) $(p \vee r) \wedge T_{0}((1), \mathrm{L} 7) ;$ (3) $T_{0}((2), \mathrm{L} 3, \mathrm{R} 7) ;$ (4) $r \vee \neg r$ ((3),L8);
(5) $r \rightarrow r((4), \mathrm{L} 3, \mathrm{~L} 12)$; (6) $p \rightarrow(\neg q \vee r)$ (Prem).

Now (6),(5),(1) and R11 imply $(\neg q \vee r) \vee r$. Then applying L4, L6 and L12 respectively leads to the conclusion $q \rightarrow r$.
3. Suppose $A-C=B-C$ and $C-A=C-B$. We must show that $A=B$.

We show that $A \subseteq B$ and $B \subseteq A$.
(i) Proof of $A \subseteq B$.

Let $x \in A$. We distinguish the cases $x \in C$ and $x \notin C$.
Case 1: Suppose $x \in C$. Then $x \notin C-A$. So $x \notin C-B$. Then necessarily $x \in B$ (because $x \in C$ and $x \notin B$ would imply $x \in C-B$).
Case 2: Suppose $x \notin C$. Then $x \in A-C$. So $x \in B-C$. So again $x \in B$.
From Case 1 and Case 2 we conclude $A \subseteq B$.
(ii) Proof of $B \subseteq A$.

This proof is analogous to part (i), by interhanging the roles of A and B.

