Program Verification (192114300)

Exam 25 June 2013, 13:45-17:15

o This exam contains 5 exercises, for which at most 90 points are awarded. The final mark equals the

number of points obtained divided by 10, plus one.

* During the exam, the use of all materials is allowed.

Exercise 1 (20 points)

Consider the (in)famous fic-tac-roe game, in which two players in turn have to mark one of the previously
unmarked fields of a 3 > 3 playing board with either X or O. Player X always starts; a player has won
if he manages to put his marks on all the fields in a row (either horizontally, vertically or diagonally). For
instance, the following board represents a situation where player O has won.

Design a graph representation of this game that allows an easy representation of moves and the detection
of a winner,

(4 poinis) Give the type graph of your representation. Full points will only be awarded for a solution
in that takes advantage of the symmetry of the board.

. (3 points) Give a graph representation of the start state for a 2 x 2-board (instead of the usual 3 x 3-

board).

. (3 poinis) Give one or more rules to represent a move. Full points will only be awarded for a solution

in which all moves are applications of a single rule.

. (5 points) Give one or more conditional rules to detect a winner. Full points will only be awarded

for a solution in which all winning situations are applications of a single rule, which is, moreover,
applicable both on the 2 x 2-board and on the 3 » 3-board.

. {3 poinis) Draw the entire state space resulting for the 2 x 2-board, in which you collapse isomorphic

graphs into single states. You do not have to draw the graphs of the individual states, but do make
clear (by annotating your arrows) which transition corresponds to what (type of) move.

Exercise 2 (20 points)
Consider the following type graph, which can be used to represent simple trips (consisting of a single leg
with any of three types of transport) or composite trips (consisting of several consecutive legs). An example
graph satisfying this type graph is also given.

Type Graph Example graph

] 2 Place from—
name = "Home"
from —{ Private

Place
airport i m bike
station P A 3 10
name: string | Single | Plane Place il
T 4 station s
from Private name = "Hengelo” [from
g Bt 2 bike],
: e rental Place 10 “"“ﬂ
LTrip g m taxi airport
station b has
nama = "Schiphol® [from
o has
Place
airport
name = "Budapest”
—_—— — from

taxi
Place ©
name = "Hatel" to

The numbers in the type graph are node identities that will be used in the exercise below. Below, we call
the target of a from-edge the start place of the trip, and the destination of the to-edge its destination.

a. (6 points) Is the following graph well-typed? 1f so, give a typing morphism that maps the graph
nodes to the type nodes, and show that the morphism is correct; if not, argue that there does not exist

such a morphism.
0 1

Fiace Lo — (Pane]

b. (6 points) What property does the following predicate graph express? Formulate the property in
natural language and in first order logic.

fom has | has 1o
Place Hrom {Single @ Single k:ljll'-‘lncs

¢. (8 points) Express each of the following properties in first order logic and as graph predicates.

o A train trip must always start in a station.
o Thereis a leg of a composite trip starting in a place that is neither the start place of the composite
trip nor the destination of any leg of that trip. (If this property holds, if means that there is

something wrong with the trip.)

Exercise 3: Hoare Logic (25 points)

a. (7 points) Consider the statement pick(S;,S;) that randomly chooses to execute either S; or Sy
(but not both). Its semantics is described by the following operational semantics rule:

(51,8) = &' v (51,8) = &
(pick(S;,Sa),8) =+ &

Give a Hoare logic rule for this statement, and argue why it is correct.

=

(10 points) Consider the statement doBound(n){5} that executes statement S exactly n times. No-
tice that the n just states how many times S should be executed, it is not a program variable that can
be used in S. Its semantics is described by the following two operational semantics rules:

(5,5) = s (doBound(n — 1){S},s") = s"

(doBound(0){S},s) =+ s (doBound(n){5},5) — 5" >0

Give a Hoare logic rule for this statement, and argue why it is correct. Since in a verification you
might need to know how many times the body S has been executed, the rule should incorporate a
special specification-only variable iter that denotes the number of times the body has been exe-
cuted,

. (8 points) Consider the method approxval, using the statements defined above.

o

requires true;
ensures 7
method approxVal(int n) |
int total := 0;
doBound (n) {
pick(total := total + 1,
total := total + 2);
}
return total;
1

Write a postcondition to specify the result value of approxval, and use your rules to prove correct-
ness of the method,

Exercise 4: Separation Logic (25 points)

Consider the class Mat rixList. Iis intention is to provide an altemative representation of lists: instead
of storing data in a single list, it stores it in multiple smaller lists (this might for example allow a more
efficient mapping to memory). However, the nodes stored in the MatrixList can be accessed as if it
was a single list, using operations get and set.

class MacrixList |

IntList thisList;
MatrixList rest;

// get node i from matrixlist
List get{(int i) |
if (i < thisList.size()) {
raturn thisList.get (i);
} else |
return rest.get(i - thisList.size());
}
)

// set value in nede in matrixlistc
void set (int i, int val) |
if (i < thisList.size()) |
thisList.set (i, val);
} else |
rest.set (i - thisList.size(), wval);
1
]

// return length of matrix list
int size() (
if (rest == pull) {
raturn thislist.size();
} else
return thislist.size() + rest.size();
b

For completeness, we give the declarations in class List, as used in Mat rixList.

class List |
// pred list<p,q.alpha> = ...

int val;
List next;

// get nede i from list
List get{int i) {

£
}

// set value in nede i in list
void set(int i, int val) |

75 L

1

// return length of list
int size() |
2l b
}
)

a. (3 points) Specify an abstract predicate 11 st that caplures that Mat rixList represents a sequence
a. You may assume that there is an appropriate 1ist predicate defined for class IntList and
that you have the necessary functions defined over sequences. The predicate should be usable in a
multithreaded setting, thus it has 1o be parametrised with permissions. Make a distinction between
the permission to change the list structure, and a permission to update the values.

b. (3 points) Write a specification for method get using this abstract predicate.

Consider now the method sort in Figure 1 that sorts the elements in a MatrixList. It does this by
creating a large number of threads that in each round compare the value at position ¢ with one of its

neig s, and if y swaps these (in fact, to sort N elements, | N/2| threads are created). By
repeating this procedure sufficiently often (i.e., at least N times), eventually the list will be sorted.

. (5 points) Specify method swap for use in a multithreaded application, i.e., using permissions.

d. (6 points) Specify a predicate preFork for method run in class SortingThread that is suffi-
cient to prove that their will be no data races.

e. (6 poinis) The different rounds synchronise by means of a barrier. Give an appropriate specification
for the behaviour of the barrier, and explain why this is sufficient to establish data race freedom of
the complete run method.

class SortingThread {

Barrier bar;

int steps;

int id;
MatrixList sort;

init (Barrier b, int s, int i, MatrixList m) {

bar := b;
steps = 5;
id := i;

Sort = m;

void swap (int idl, int id2) {
int temp := sort.get (idl);
sort.set (idl, sort.get (id2));
sort.set (id2, temp);

}

void method runi} {
int count := 0;
while (count < steps) {
if (count % 0 == 0) {
if (sort.get(id - 1) > sort.get(id}) {
swap(id - 1, id);
}
| else |
if (id + 1 < sort.size() & sort.get(id) > sort.get(id + 1}) [
swap(id, id + 1};
1
)
count := count + 1;
bar.barrier();

method sort(MatrixList teoSort) |

int i = 1;

int 1 := toSort.size();

Barrier b := new Barrier(l/2);

while (i < 1) {
SortThread tr := new SortThread;
tr.init(b, 1 + 1, i, toSort);
fork(tr);
L aml L2

il s

Figure 1: Method sort

