Old Exam Questions for Practice

NLP

2021-2022

Introduction

This is a collection of old exam questions to help you practice for the NLP exam. This collection does not yet cover the newest topics from Edition 3 of the J\&M book. Questions about vectors and neural networks are not included here, but you will find those in the practice exam of October 2020.

WARNING: This collection contains more questions than a real exam. A typical NLP exam has 16-18 multiple choice questions (5 points each) and 1 or 2 open questions (usually 10 points each). See the exam of October 2020 for a typical example of the size of the exam.

Answers to the questions will be provided in a separate file.

Multiple choice questions

1. Below you see the transition table of a finite state automaton. The initial state is 0 ; the final state is 4 . \emptyset denotes the fail state, where no successful transition is possible for the given symbol. Note that when encountering a b in state 2 , two transitions are possible: we can either stay in state 2 or move on to state 3 .

	Input		
State	a	b	c
0	1	\emptyset	\emptyset
1	\emptyset	2	\emptyset
2	\emptyset	2,3	\emptyset
3	\emptyset	\emptyset	4
$4:$	\emptyset	\emptyset	3

Which of the following regular expressions matches the FSA? (The regular expression has to match exactly the same set of strings that is accepted by the FSA: not more, not less.)
(a) $\mathrm{abb}+\mathrm{c}(\mathrm{cc})^{*}$
(b) $a b b b^{*} c+$
(c) $\mathrm{abbb}+\mathrm{c}+\mathrm{c}$
(d) $a b^{*} b b(c c)+$
2. Which of the following regular expressions matches the automaton shown below?
(a) $a b a+b b$
(b) $a b a+b^{*}$
(c) $(a b a * b)^{*}$
(d) $(a b a * b) * b$

3. Consider the following two statements about inflection and derivation.
i) In English tacking an s onto the end of an infinitive verb (for example, sing \rightarrow sings) is a form of inflection.
ii) In English adding the suffix -ism to an adjective (for example, national $\rightarrow n a$ tionalism) is a form of inflection.

Which of these statements are true?
(a) Only i) is true
(b) Only ii) is true
(c) Both are true
(d) None of them is true
4. In his time, Shakespeare created many new words that are now commonly used in the English language. One of them is the word unreal. This word was used for the first time in Macbeth: Hence, horrible shadow! Unreal mockery, hence! (Macbeth, Act III, Scene IV).
What kind(s) of word formation took place in the creation of unreal?
(a) Compounding
(b) Inflection
(c) Derivation
(d) Inflection and derivation
5. Which kind of word formation process has taken place to form the word bookings?
(a) Inflection
(b) Derivation
(c) Both inflection and derivation
(d) It depends on whether the stem book is a noun or a verb
6. Which of the following statements is NOT true?
(a) Lemmatization takes part of speech into account; stemming does not
(b) Lemmatization is aimed at producing the linguistic stem; stemming is not
(c) Lemmatization can handle words formed through derivation; stemming cannot
(d) Lemmatization can deal with irregular word forms; stemming cannot
7. Some natural language stemming algorithm has the following two properties: 1) the words adhere and adhesion remain distinct after stemming; 2) the words experiment and experience are reduced to the same stem.

Which of the following statements is true?
(a) Both 1) and 2) are errors of commission
(b) Both 1) and 2) are errors of omission
(c) 1) is an error of commission, 2) is an error of omission
(d) 1) is an error of omission, 2) is an error of commission
8. When discussing the Porter stemmer in Section 2.4.4, J\&M give the pair organizationorgan as an example of an error of commission. However, the linguistic stem of organization is in fact organ: the word organization is formed in the same way as for example fossilization (fossil \rightarrow fossilize \rightarrow fossilization) and its morphological structure is organ+ize+ation.
So, did J\&M make a mistake with this example or are they right, and why?
(a) J\&M are right, because stemming is not aimed at finding the correct linguistic stem of a word
(b) J\&M are right, because from an Information Retrieval perspective, organization should not have been stemmed at all
(c) J\&M have made a mistake, because organ is the linguistic stem of organization and therefore organization has been stemmed correctly
(d) J\&M have made a mistake, because reducing organization to organ is not an error of commission but an error of omission.
9. Let $\operatorname{med}(x, y)$ denote the minimum edit distance between words x and y. Consider the equality:
$\operatorname{med}(u+v, u+w)=\operatorname{med}(v, w)$,
where u, v and w are sequences of characters (words) and where $u+v$ denotes the concatenation of words u and v. Thus for example tea + spoon equals teaspoon.

The equality
(a) is true for all u, v and w, no matter the cost functions of deletion, insertion and substitution.
(b) is only true when the cost of substitution is the sum of the cost of insertion and deletion.
(c) is only true when the minimum edit distance is a true distance function (i.e. satisfies the three requirements for distance functions δ : 1) $\delta(x, x)=0,2)$ $\delta(x, y)=\delta(y, x)$ and 3) $\delta(x, y)<=\delta(x, z)+\delta(z, y)$.
(d) is only true when u is the empty string.
10. What is the minimum edit distance between the words "seventy" and "seventeen" when we use the Levenshtein distance in which insertion and deletion have a cost 1 and substitution has cost 2 ?
(a) 3
(b) 4
(c) 5
(d) 6
11. We are building a bigram model with explicit modelling of both the start and end of sentences. How many unique bigrams do we find in the sentence to be or not to be? (The question mark is NOT part of the sentence)
(a) 4
(b) 5
(c) 6
(d) 7
12. We are building a regularised unigram model using $k=1$ on a training set of the following sentence: $a b b a a$, with a vocabulary of three words: " a ", " b " and " c ". What is the probability of the different unigrams?
(a) $p(a)=\frac{3}{5} \quad p(b)=\frac{2}{5} \quad p(c)=\frac{0}{5}$
(b) $p(a)=\frac{4}{5} \quad p(b)=\frac{3}{5} \quad p(c)=\frac{1}{5}$
(c) $p(a)=\frac{4}{6} \quad p(b)=\frac{3}{6} \quad p(c)=\frac{1}{6}$
(d) $p(a)=\frac{4}{8} \quad p(b)=\frac{3}{8} \quad p(c)=\frac{1}{8}$
13. We often use the logarithms of probabilities rather than probabilities, because:
(a) We speed up computations and get the exact same results as with probabilities
(b) We speed up computations and get sufficiently good approximations of the actual probabilities
(c) This allows us to work around hardware limitations for numerical precision
(d) Using the logarithms allows us to get more accurate results when dealing with large negative probabilities
14. What is a correct Part of Speech tagging for the sentence that oil can burn? (We use the following PoS tags: Det=determiner; Art=article; N=noun; V=verb; Pron=pronoun)
(a) that/Art oil/N can/N burn/V
(b) that/Det oil/N can/V burn/V
(c) that/Pron oil/V can/V burn/V
(d) that/Pron oil/N can/V burn/V
15. Assigning part-of-speech tags is hard because words can be ambiguous, in the sense that:
(a) Most words may have a different POS tag depending on their context in a sentence
(b) A relatively small number of very commonly used words may have a different POS tag depending on their context in the sentence
(c) The same word may have multiple different tags at the same time
(d) Different words may have the same tags in a given context
16. What is the best Part of Speech for the word that in the sentence Did he go that far?
(a) Conjunctive
(b) Adjective
(c) Adverb
(d) Pronoun
17. A language has 100 words. Every word w has equal probability of occurring in a sentence. For every word w_{j}, every word w_{i} also has equal probability of occurring after w_{j}. What are the values of the probabilities $P\left(w_{j} w_{i}\right)$, the probability that the bigram $w_{j} w_{i}$ occurs, and $P\left(w_{i} \mid w_{j}\right)$, the probability of word w_{i} if the preceding word is w_{j} ?
(a) $P\left(w_{j} w_{i}\right)=0.01$ and $P\left(w_{i} \mid w_{j}\right)=0.01$
(b) $P\left(w_{j} w_{i}\right)=0.0001$ and $P\left(w_{i} \mid w_{j}\right)=0.01$
(c) $P\left(w_{j} w_{i}\right)=0.01$ and $P\left(w_{i} \mid w_{j}\right)=0.0001$
(d) $P\left(w_{j} w_{i}\right)=0.0001$ and $P\left(w_{i} \mid w_{j}\right)=0.0001$
18. A language has 1000 words. In a sample of 100 words we count 9 words that occur 10 times, and 2 words that occur 5 times. The remaining 989 words of the language do not occur in our sample. We use Add-One smoothing to estimate probabilities of word occurrences. What is the total probability of the re-estimated probabilities for words that didn't occur in our sample?
(a) 0.899091
(b) 0.000909
(c) 0.001010
(d) 0.901010
19. Given the "document" abcabcabcabc over the three letter alphabet a, b, c, the value for the maximum likelihood estimate of the conditional probability $P_{m l e}(c \mid a b)$ is:
(a) 1.0
(b) 0.0
(c) 0.5
(d) 0.75
20. Consider the following artificial co-occurrence counts.

	book	text	tree	paper
read	0	4	1	11
write	4	0	0	1
expose	2	1	0	0

What is the cosine similarity between write and expose?
(a) $\sqrt{4+1} / \sqrt{85}$
(b) $8 / \sqrt{138 \times 17 \times 5}$
(c) $8 / \sqrt{85}$
(d) None of the above
21. Which of the following statements is true?
(a) Skip-grams and Continuous Bag Of Words use a deep, non-linear, neural network to compute word embeddings.
(b) Skip-grams are identical to a eigenvector and eigenvalue decomposition of the Pointwise Mutual Information matrix.
(c) Skip-grams do not result in a single embedding, but in two word embeddings. Combined, these are used to reconstruct the context of words.
(d) None of the above is correct.
22. Consider the sentence she bought a potato and some carrots when she went to the corner store. Which of the following lists of word sequences only contain constituents of this sentence?
(a) "she bought", "a potato and some carrots"
(b) "she", "to the corner store"
(c) "the corner store", "bought a potato"
(d) "potato", "she went to the corner store"
23. Consider the following grammar.

Rules:	Lexicon
$\mathrm{S} \rightarrow$ NP VP	$\mathrm{N} \rightarrow$ people \mid ideas $\mid \ldots$
$\mathrm{NP} \rightarrow($ Adj $) \mathrm{N}$	Adj \rightarrow young \mid furious \mid dangerous \mid green $\mid \ldots$
$\mathrm{VP} \rightarrow \mathrm{V}($ Adv $)$	$\mathrm{V} \rightarrow$ sleep \mid have $\mid \ldots$
$\mathrm{VP} \rightarrow \mathrm{V}$ NP	Adv \rightarrow very \mid well \mid furiously $\mid \ldots$

Given this grammar, which of the following sentences is ungrammatical?
(a) People have dangerous ideas.
(b) Young people sleep very well.
(c) Green ideas sleep furiously.
(d) Young people sleep furious people.
24. Consider the following grammar.

Rules: Lexicon:

1. $S \rightarrow$ AP Noun \quad Noun \rightarrow house \mid book $\mid \ldots$
2. $\mathrm{S} \rightarrow$ Noun \quad Adj \rightarrow nice \mid red \mid angry $\mid \ldots$
3. AP \rightarrow AP Adj
4. AP \rightarrow Adj

Assume you are using a top-down depth-first parser that applies the grammar rules in the order given above. What will happen when trying to parse the input nice angry house?
(a) The parser will succeed and output one parse
(b) The parser will succeed and output more than one parse
(c) The parser will fail
(d) The parser will loop forever
25. Consider the following sentences. The sentences marked with * are not proper English.
the angry player is young
the young coach is angry
the former coach is angry at the player
*the coach is former
*the angry at the player coach is young
*the coach is young at the player
Now consider the following constituency grammars. Which of these grammars generates the first three sentences given above, but none of the sentences marked with *?

Grammar (i)

Rules:
S \rightarrow NP VP
NP \rightarrow Det NP
$\mathrm{NP} \rightarrow \mathrm{AP} \mathrm{N}$
$\mathrm{NP} \rightarrow \mathrm{N}$

Lexicon:
$\mathrm{VP} \rightarrow$ Vbe AP $\quad \mathrm{N} \rightarrow$ player \mid coach
AP \rightarrow AP PP \quad Adj \rightarrow young \mid angry \mid former
AP \rightarrow Adj $\quad \mathrm{P} \rightarrow$ at \mid on
$\mathrm{PP} \rightarrow \mathrm{P}$ NP \quad Vbe \rightarrow is
Det \rightarrow the

Grammar (ii)
Rules: Lexicon:
$\mathrm{S} \rightarrow$ NP VP $\quad \mathrm{NP} \rightarrow \mathrm{N} \quad \mathrm{N} \rightarrow$ player \mid coach
VP \rightarrow Vbe AP \quad AP1 \rightarrow Adj1 \quad Adj1 \rightarrow angry
VP \rightarrow Vbe AP3 \quad AP2 \rightarrow Adj2 \quad Adj2 \rightarrow former
NP \rightarrow Det NP \quad AP3 \rightarrow Adj3 \quad Adj $3 \rightarrow$ young
$\mathrm{NP} \rightarrow$ AP1 N $\quad \mathrm{AP} \rightarrow \mathrm{AP} 1 \mathrm{PP} \quad \mathrm{P} \rightarrow$ at \mid on
$\mathrm{NP} \rightarrow \mathrm{AP} 2 \mathrm{~N} \quad \mathrm{PP} \rightarrow \mathrm{P}$ NP $\quad \mathrm{Vbe} \rightarrow$ is
Det \rightarrow the
Grammar (iii)
Rules: Lexicon:
$\mathrm{S} \rightarrow$ NP VP (AP1) $\quad \mathrm{N} \rightarrow$ player \mid coach
VP \rightarrow Vbe \quad Adj1 \rightarrow angry
$\mathrm{NP} \rightarrow \mathrm{N}$
Adj2 \rightarrow former
$\mathrm{NP} \rightarrow$ Det $(\mathrm{AP} 2) \mathrm{N} \quad$ Adj3 \rightarrow young
AP1 $\rightarrow($ Adj1 $\mid \operatorname{Adj} 3)(\mathrm{PP}) \quad \mathrm{P} \rightarrow$ at \mid on
AP2 \rightarrow Adj1 \mid Adj2 \mid Adj3 \quad Vbe \rightarrow is
$\mathrm{PP} \rightarrow \mathrm{P}$ NP \quad Det \rightarrow the
(a) Grammar (i)
(b) Grammar (ii)
(c) Grammar (iii)
(d) None of these grammars
26. Each of the two headlines below has two possible meanings: one is the intended one and one is a humorous (but unintended) meaning.

- Headline 1: Fear of Bird Flu Grips Turkey
- Headline 2: Sisters Reunited After 18 Years In Queue

For which of the two headlines is the humorous meaning caused by syntactic ambiguity?
(a) Headline 1
(b) Headline 2
(c) Both Headline 1 and Headline 2
(d) Neither of the two headlines
27. Consider the following grammars. They all share the same lexicon.

$$
\begin{aligned}
& \text { Grammar 1: } \\
& \mathrm{S} \rightarrow \text { NP VP } \\
& \text { VP } \rightarrow \text { V NP NP } \\
& \text { NP } \rightarrow \text { Det Nom } \\
& \text { NP } \rightarrow \text { Det AP Nom } \\
& \text { AP } \rightarrow \text { Adv AP } \\
& \text { AP } \rightarrow \text { Adj }
\end{aligned}
$$

Lexicon:

$\mathrm{V} \rightarrow$ give | like
Det \rightarrow a \mid the
Adv \rightarrow very
Adj \rightarrow nice
Nom \rightarrow girl | boy | book

Which of these grammars is in Chomsky Normal Form?
(a) Grammar 1.
(b) Grammar 2.
(c) Grammar 3.
(d) None of the grammars.
28. Consider the following grammar.

Rules
$\mathrm{S} \rightarrow$ NP VP
VP \rightarrow run | like | eat
$\mathrm{VP} \rightarrow \mathrm{V} \mathrm{NP}$
$\mathrm{VP} \rightarrow \mathrm{V} \mathrm{PP}$
NP \rightarrow horses \mid grass \mid sugar |cubes
$\mathrm{NP} \rightarrow \mathrm{N} \mathrm{N}$
$\mathrm{NP} \rightarrow \mathrm{N} \mathrm{PP}$
$\mathrm{PP} \rightarrow \mathrm{P}$ NP
If we use this grammar to fill in a CKY parse table for the sentence Horses like sugar cubes (see Figure 1), what will the contents of cell [1, 3] be when the entire table is filled?

Figure 1: Empty CKY parse table for Horses like sugar cubes.
(a) VP, PP
(b) NP, VP, PP
(c) $\mathrm{VP}_{1}, \mathrm{VP}_{2}, \mathrm{~S}$
(d) The cell will be empty
29. Which of the following statements is not true?
(a) Constituency grammars are more suitable than dependency grammars for capturing generalizations between how groups of words behave.
(b) Constituency grammars are more suitable than dependency grammars for specifying constraints on word order.
(c) Unlike Constituency grammars, dependency grammars do not make a distinction between terminals and non-terminals.
(d) Unlike dependency grammars, Constituency grammars cannot express information about the head words in a sentence.
30. Which of the following is not a difference between the arc-standard and arc-eager transition systems in transition-based dependency parsing?
(a) In the arc-eager system, the RightARc operator is always applied immediately; in the arc-standard system, its application may be postponed.
(b) In the arc-standard system, the RightArc operator removes the word from the top of the stack; in the arc-eager system, it does not.
(c) In the arc-standard system, Shift is the only operator that adds words to the stack; in the arc-eager system, it is not the only operator that does this.
(d) In the arc-standard system, backtracking is not possible; in the arc-eager system, it is.

Open question

1. In his famous book The Language Instinct (Penguin Press, 1994), Steven Pinker quotes the following, accidentally ambiguous sentence: "Tonight's program discusses stress, exercise, nutrition and sex with Celtic forward Scott Wedman, Dr Ruth Westheimer, and Dick Cavett."
(a) Write down a small context-free grammar that can be used to derive this sentence. Keep your grammar compact, but make sure it can assign at least two different tree structures to the sentence, illustrating the structural ambiguity. Proper names and tonight's may be treated as single words in the lexicon. Use only linguistic categories and phrases (Noun, Verb, NP, VP, etc.) in your grammar, and take care that your rules adequately reflect constituent structure.
(b) How many different tree structures can your grammar assign to the sentence? Draw two of them and explain the ambiguity of the sentence in terms of the differences between the trees.
