Course : Discrete Mathematics for Technical Computer Science; Part 1
Date : January 14, 2021
Time : 09.00-10.00 hrs

Motivate all your answers.

The use of electronic devices is not allowed.
A formula sheet is included.
Write your solutions of Part 1 (Questions 1, 2 and 3) and Part 2 (Questions 4, 5 and 6) on two separate sheets of paper!

In this exam: $\mathbb{N}=\{0,1,2,3, \ldots\}$.

1. [6 pt]

Let A, B and C be sets in a universe \mathcal{U}. Give quantified expressions for the following statements.
(a) $A \cap B=\emptyset$
(b) C is a subset of A but C is not a subset of B.
2. [6 pt]

Prove the validity of the following argument using the "Laws of Logic" and the "Rules of Inference".

$$
\begin{aligned}
& u \rightarrow r \\
& (r \wedge s) \rightarrow(p \vee t) \\
& q \rightarrow(u \wedge s) \\
& \neg t \\
& q \\
& \hline \therefore p
\end{aligned}
$$

3. [6 pt]

Let A and B be sets in a universe \mathcal{U}. Give a proof or a counterexample for the following equality:

$$
(A-B) \cup(B-A)=(A \cup B)-(A \cap B)
$$

Total: 18 points

Course : Discrete Mathematics for Technical Computer Science; Part 2
Date : January 14, 2021
Time : 10.00-11.00 hrs

Motivate all your answers.

The use of electronic devices is not allowed.
A formula sheet is included.
Write your solutions of Part 1 (Questions 1, 2 and 3) and Part 2 (Questions 4, 5 and 6) on two separate sheets of paper!

In this exam: $\mathbb{N}=\{0,1,2,3, \ldots\}$.
4. [6 pt]

Let $a_{0}=0, a_{1}=1$ and let a_{n} for $n \geq 2$ be defined by:

$$
a_{n}=\frac{1}{n} \cdot a_{n-1}+\frac{n-1}{n} \cdot a_{n-2}
$$

Prove for all $n \in \mathbb{N}$ for which $n \geq 2: 0 \leq a_{n} \leq 1$
5. [6 pt]

Let A and B be sets, $f: A \rightarrow B$ a function and $A_{1}, A_{2} \subseteq A$.

Prove that if f is one-to-one, $f\left(A_{1} \cap A_{2}\right)=f\left(A_{1}\right) \cap f\left(A_{2}\right)$.
6. [6 pt]

Let $A=\mathbb{R}$ and let R be the relation on A given by:

$$
(x, y) \in R \quad \text { if and only if } \quad|x-y| \in \mathbb{Z} \text { i.e. }|x-y| \text { is an integer. }
$$

(a) Show that R is an equivalence relation on A.
(b) Give a description of [1.5] i.e. the equivalence class of 1.5 .

Total: 18 points

Laws of Logic

L1. $\quad \neg \neg p \Leftrightarrow p$
L2. $\quad \neg(p \vee q) \Leftrightarrow \neg p \wedge \neg q, ~(p \wedge q) \Leftrightarrow \neg p \vee \neg q$
L3. $\quad p \vee q \Leftrightarrow q \vee p$ $p \wedge q \Leftrightarrow q \wedge p$

L4. $\quad p \vee(q \vee r) \Leftrightarrow(p \vee q) \vee r$ $p \wedge(q \wedge r) \Leftrightarrow(p \wedge q) \wedge r$

L5. $\quad p \vee(q \wedge r) \Leftrightarrow(p \vee q) \wedge(p \vee r) \quad$ Distributive Laws $p \wedge(q \vee r) \Leftrightarrow(p \wedge q) \vee(p \wedge r)$

L6. $\quad p \vee p \Leftrightarrow p$
$p \wedge p \Leftrightarrow p$
L7. $\quad p \vee F_{0} \Leftrightarrow p$

$$
p \wedge T_{0} \Leftrightarrow p
$$

L8. $\quad p \vee \neg p \Leftrightarrow T_{0}$ $p \wedge \neg p \Leftrightarrow F_{0}$

L9. $\quad p \vee T_{0} \Leftrightarrow T_{0}$ $p \wedge F_{0} \Leftrightarrow F_{0}$

L10. $p \vee(p \wedge q) \Leftrightarrow p$ $p \wedge(p \vee q) \Leftrightarrow p$

L11. $p \leftrightarrow q \Leftrightarrow(p \rightarrow q) \wedge(q \rightarrow p)$
L12. $\quad p \rightarrow q \Leftrightarrow \neg p \vee q$
L13. $\quad p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p$

Law of Double Negation
DeMorgan's Laws

Commutative Laws

Associative Laws

Idempotent Laws

Identity Laws

Inverse Laws

Domination Laws

Absorption Laws

R1. p

$$
\frac{p \rightarrow q}{\therefore q}
$$

R2. $\quad p \rightarrow q$
$\frac{q \rightarrow r}{\therefore p \rightarrow r}$

R3. $\quad p \rightarrow q$
$\frac{\neg q}{\therefore \neg p}$
R4. $\quad p$
$\frac{q}{\therefore p \wedge q}$
R5. $\quad p \vee q$
$\frac{\neg p}{\therefore q}$
R6. $\quad \frac{\neg p \rightarrow F_{0}}{\therefore p}$
R7

$$
\frac{p \wedge q}{\therefore p}
$$

R8.

R9. $\quad p \wedge q$

$$
\frac{p \rightarrow(q \rightarrow r)}{\therefore r}
$$

R10. $p \rightarrow r$
$\frac{q \rightarrow r}{\therefore(p \vee q) \rightarrow r}$
R11. $p \rightarrow q$
$r \rightarrow s$
$\frac{p \vee r}{\therefore(q \vee s)}$
R12. $\quad p \rightarrow q$
$r \rightarrow s$
$\frac{\neg q \vee \neg s}{\therefore \neg p \vee \neg r}$

Law of the Syllogism

Rules of Inference

Modus Ponens

Modus Tollens

Rule of Conjunction

Rule of Disjunctive Syllogism

Rule of Contradiction

Rule of Conjunctive Simplification

Rule of Disjunctive Amplification

Rule of Conditional Proof

Rule for Proof by Cases

Rule of the Constructive Dilemma

Rule of the Destructive Dilemma

Laws concerning quantifiers

N1. $\neg[\forall x p(x)] \Leftrightarrow \exists x \neg p(x)$
N2. $\neg[\exists x p(x)] \Leftrightarrow \forall x \neg p(x)$

Additional Laws concerning quantifiers
U1. $\forall x p(x)$
$\therefore p(c)$ for arbitrary c in the universe

U2. $\exists x p(x)$
$\therefore p(c)$ for some c in the universe

U3. $p(c)$ for arbitrary c in the universe $\therefore \forall x p(x)$

U4. $p(c)$ for some c in the universe $\therefore \exists x p(x)$

U1: Rule of Universal Specification
U2: Rule of Existential Specification
U3: Rule of Universal Generalization
U4: Rule of Existential Generalization

