Test Pearl 110 — Intelligent Interaction

Pearls of Computer Science (201300070) October 19 2018,

Module coordinator: Doina Bucur Instructors: Christin Seifert and Gwenn Englebienne

- You may use 1 A4 sheet with your own notes for this test, as well as a simple calculator
- Scientific or graphical calculators, laptops, mobile phones, books etc. are not allowed. Put those in your bag now (with the sound switched off)!
- Total number of points: 100

Question 1 20 points

A bag contains 10 fair dice: of which two are 4 sided dice, one is a 6 sided dice, 2 are 8-sided dice, 4 are 12-sided dice and 1 is a 20-sided dice. All the dice are fair, so that for example the probability of throwing a 3 with a 20 sided dice is 1/20. John randomly draws a dice from the bag and then throws this dice. The outcome is 5. This is the data or observation D.

	Н	P(H)	P(D H)	P(D H).P(H)	P(H D)
2×	4				
1,0	6				
2,0	8				
Ćκ	12				
16	20				

- (a) Copy the above table to your answer form and fill in the table with the correct entries (all empty entries should be filled in). In the table H stands for the possible dice (hypothesis), P(H) is the prior probability, P(D|H) the likelihood, and P(H|D), the normalized posterior of H given the data D.
- (b) What is the most likely value of H when we know D (i.e. that the outcome is 5)?

25 points

Ouestion 2

Consider the following piece of email, denoted by e:

we have display boxes with credit applications that we need to place in the small owner-operated stores in your area . here is what you do : 1 . introduce yourself to the store owner or manager . 2 . use our 90 % effective script which tells them how this little $\underline{\text{display}}$ box will $\underline{\text{save}}$ their customers hundreds of dollars , be a drawing card for their business

and a vocabulary V given by V= (business, display, lifetime, save, text).

(a) How will this piece of text e be coded using a bag of words coding (with multinomial document-wise distributions)?

Now assume that one has the following database with spam and ham emails, only described by the words in V:

Id	words in V	class
1	business, lifetime, save, lifetime, save, text	spam
2	business, display, display, save, save, text	spam
3	business, text, text, save, save	ham
4	display, display, lifetime, text	ham
5	lifetime, save, save, text	ham
6	business, display, text	ham

23245

- (b) Compute the likelihood that the above email is generated by the spam class, i.e. compute P(e|spam). Assume that no smoothing is applied and one uses a multinomial bag of words coding.
- (c) Also compute P(e|ham)
- (d) How will this email e be classified, spam or ham? Clearly explain your answer.

25 points

Question 3

Consider the following simple data set about cars with the attributes (features) C (color) and S (speed), with C taking the values b (black), w (white) and g (green) and P (price) has values f (fast) and f (slow). The class label is given in the last column and is f (yes, buy) or f (no, don't buy).

Id	C	S	Class label		
1	(f	у	1/111	
2	w	f -	У	2	/ \ \
3	B	f :	у	1	(s, s)
4	(S.	y		5 3 3
5	w	f :	у		// //
6	(g) .	S	у		
7	(b)	S	n	14th	
8	w	S	n	1	
9	(8)	S	n	1	
10	(b)	S	n	1	
11	w ·	f -	У	3	
12	(8)	f .	у		
13	w	f.	n		
14	w	f	у .	4	
15	w	f :	у	5	

- (a) What is the information gain for attribute C and for attribute S? A table with values for $-p\log_2(p)$ can be found at the end of this exam.
- (b) Which attribute will be at the top of the decision tree and why?
- (c) Compute and draw the complete decision tree.
- (d) According to this decision tree, should you buy fast, white cars? Why? Should you buy slow, green cars? Why?

15 points Question 4

A certain classifier was tested on a test, resulting in the following confusion matrix:

		Predicted class		
		C_1	C_2	C_3
Actual	C_1	10	5	12
Class	C_2	9	11	1
	C_3	2	0	6

- (4) What is the accuracy of this classifier? Round to two digits after the decimal point.
- (b) If C_3 is not relevant any more for the task at hand, what is the accuracy of this classifier, that now has only to distinguish classes C_1 and C_2 ? Round to two digits after the decimal point.
- For which class does the classifier have the highest precision? Calculate all precision values and also note down your final decision. Round to two digits after the decimal point.
- (d) For which class does the classifier have the highest recall? Calculate all recall values and also note down your final decision. Round to two digits after the decimal point.
- (e) Which of the two classes does the classifier confuse most (and in which direction)?

15 points Question 5

Assume that we are training a linear classifier and that the current linear classifier is given by the line $-2-2x_1+2x_2=0$. The next feature point in our training set is given by x=(-1,-1).

- (a) How will the feature point x be classified, given the current weights w = (-2, -2, 2) of the linear classifier, 0 or 1?
- (b) Assume that the feature point x is misclassified. How will the weights of the linear classifier be adapted? Assume a learning rate α of 0.2 and only one iteration of adapting the weights.
- (c) How will x be classified after the above adaptation of the weight vectors w? Is this adaptation a step in the right direction? Motivate your answer!

Table for $-p \log_2(p)$

p	$-p\log_2(p)$	p	$-p\log_2(p)$	p	$-p\log_2(p)$
0	0	1/8	0.38	1/10	0.33
1	0	2/8	0.50	2/10	0.46
1/2	0.50	3/8	0.53	3/10	0.52
1/3	0.53	4/8	0.50	4/10	0.53
2/3	0.39	5/8	0.42	5/10	0.50
1/4	0.50	6/8	0.31	6/10	0.44
2/4	0.50	7/8	0.17	7/10	0.36
3/4	0.31	1/9	0.35	8/10	0.26
1/5	0.46	2/9	0.48	9/10	0.14
2/5	0.53	3/9	0.53	1/11	0.31
3/5	0.44	4/9	0.52	2/11	0.45
4/5	0.26	5/9	0.47	3/11	0.51
1/6	0.43	6/9	0.39	4/11	0.53
2/6	0.53	7/9	0.28	5/11	0.52
3/6	0.50	8/9	0.15	6/11	0.48
4/6	0.39			7/11	0.42
5/6	0.22			8/11	0.33
1/7	0.40			9/11	0.24
2/7	0.51			10/11	0.13
3/7	0.52				
4/7	0.46				
5/7	0.35				
6/7	0.19				