Exercise Week 3: Symbolic Model Checking CTL

Jaco van de Pol

November 16, 2010

1 The Problem

Consider the following program, where x, y, z are boolean variables, and the guarded commands are executed non-deterministically:

$$
\begin{aligned}
& \text { do } \\
& \neg x \quad \rightarrow \quad x:=1 \\
& x \wedge \neg y \quad \rightarrow \quad y:=1 \\
& \rightarrow \quad z:=\neg z \\
& \text { od }
\end{aligned}
$$

Define the following properties on this system:

$$
\begin{aligned}
\text { init } & : \equiv \neg x \wedge \neg y \wedge \neg z \\
\text { error } & : \equiv \neg x \wedge y \wedge \neg z \\
\text { pay } & : \equiv y=\neg z \\
\text { goal } & : \equiv x \wedge y \wedge z
\end{aligned}
$$

Question: Check with symbolic model checking in which states the following CTL properties hold:

- AG (\neg error)
- $\mathbf{E}[\neg$ pay \mathbf{U} goal $]$
- EG y

2 The solution

I will only work out the first example.
Step 1: Formalize the program's transition relation as a Boolean formula. Using a BDD package, this could be transformed to a BDD.
It is convenient to first formalize each command, and subsequently combine them by disjunction. This also gives us abbreviations that can be used later on. Written as a formula, with variables x, y, z (state before transition) and $x^{\prime}, y^{\prime}, z^{\prime}$ (state after transition) we get:

$$
\begin{aligned}
\mathcal{R}_{1} & : \equiv \neg x \wedge x^{\prime} \wedge y=y^{\prime} \wedge z=z^{\prime} \\
\mathcal{R}_{2} & : \equiv x \wedge \neg y \wedge y^{\prime} \wedge x=x^{\prime} \wedge z=z^{\prime} \\
& \equiv x \wedge x^{\prime} \wedge \neg y \wedge y^{\prime} \wedge z=z^{\prime} \\
\mathcal{R}_{3} & : \equiv x=x^{\prime} \wedge y=y^{\prime} \wedge z=\neg z^{\prime} \\
\mathcal{R} & : \equiv \mathcal{R}_{1} \vee \mathcal{R}_{2} \vee \mathcal{R}_{3}
\end{aligned}
$$

Step 2: rewrite the formula in the fragment EG, EU, EX.

$$
\begin{aligned}
& \mathbf{A G}(\neg \text { error }) \\
\equiv & \neg \mathbf{E F}(\neg \neg \text { error }) \\
\equiv & \neg \mathbf{E}[\text { True } \mathbf{U} \text { error }]
\end{aligned}
$$

Step 3: now we compute formulas (computers would compute BDDs), representing the set of states that satisfy the subformulas. We do this bottom up.
Step 3a (True): this is easy, just the formula True (or leaf 1 in BDDs). Note that this formula represents all 8 possible states.
Step 3b (error): this is also easy. The formula is just $\neg x \wedge y \wedge \neg z$, by definition. Note that this formula represents a unique state.
Step 3c ($\mathbf{E}[$ True \mathbf{U} error $])$: All the work is in this step. For this $E U$ formula we need to compute the least fixed point of a function (predicate transformer).

$$
\operatorname{Lfp}(Z \mapsto \operatorname{error} \vee(\text { True } \wedge \mathbf{E X} Z))
$$

Here $E X$ is computed using the Prev function, which is defined by:

$$
\operatorname{Prev}(\mathcal{S}, \mathcal{R}): \equiv \exists \overrightarrow{x^{\prime}} .\left(\mathcal{S}(\vec{x})\left[\overrightarrow{x^{\prime}} / \vec{x}\right] \wedge \mathcal{R}\left(\vec{x}, \overrightarrow{x^{\prime}}\right)\right)
$$

Extra explanation. In other words, we must compute the least fixed point of the function τ, defined by $\tau(Z)=\operatorname{error} \vee \operatorname{Prev}(Z, \mathcal{R})$. In order to do this, we frequently must compute $\exists \vec{v}$. $X \wedge \mathcal{R}$ for several X. Because \mathcal{R} is biggish, we will often do this by using the following:

$$
\begin{aligned}
& \exists \vec{v} \cdot X \wedge \mathcal{R} \\
\equiv & \exists \vec{v} \cdot X \wedge\left(\mathcal{R}_{1} \vee \mathcal{R}_{2} \vee \mathcal{R}_{3}\right) \\
\equiv & \exists \vec{v} .\left(X \wedge \mathcal{R}_{1}\right) \vee\left(X \wedge \mathcal{R}_{2}\right) \vee\left(X \wedge \mathcal{R}_{3}\right) \\
\equiv & \left(\exists \vec{v} . X \wedge \mathcal{R}_{1}\right) \vee\left(\exists \vec{v} . X \wedge \mathcal{R}_{2}\right) \vee\left(\exists \vec{v} . X \wedge \mathcal{R}_{3}\right)
\end{aligned}
$$

(actually, this corresponds to the idea of disjunctive partitioning from the lecture in week 2).
Another useful trick is the following: $\exists x . P \equiv P[0 / x] \vee P[1 / x]$, hence in particular:
$\exists x . P \wedge x \wedge Q \equiv(P[0 / x] \wedge 0 \wedge Q[0 / x]) \vee(P[1 / x] \wedge 1 \wedge Q[1 / x]) \equiv P[1 / x] \wedge Q[1 / x]$
And similarly,

$$
\exists x . P \wedge \neg x \wedge Q \equiv P[0 / x] \wedge Q[0 / x]
$$

In particular, if x doesn't occur in P and Q we can just drop it:

$$
\exists x . P \wedge x \wedge Q \equiv \exists x . P \wedge \neg x \wedge Q \equiv P \wedge Q
$$

Continue step 3c. So let us start. We must apply τ repeatedly, starting from the empty set. So we get:

$$
B_{0} \equiv \text { False }
$$

Next, we compute:

$$
\begin{aligned}
B_{1} & \equiv \text { error } \vee \operatorname{Prev}\left(B_{0}, \mathcal{R}\right) \\
& \equiv \text { error } \vee \exists \overrightarrow{\vec{x}^{\prime}} \cdot\left(\text { False }\left[\overrightarrow{x^{\prime}} / \vec{x}\right] \wedge \mathcal{R}\left(\vec{x}, \overrightarrow{x^{\prime}}\right)\right) \\
& \equiv \text { error } \vee \exists \overrightarrow{x^{\prime}} . \text { False } \\
& \equiv \text { error } \vee F \text { False } \\
& \equiv \neg x \wedge y \wedge \neg z
\end{aligned}
$$

Next, for B_{2} we must compute $\operatorname{Prev}\left(B_{1}, \mathcal{R}\right)$. As explained above, we do this in three steps:

$$
\begin{aligned}
\operatorname{Prev}\left(B_{1}, \mathcal{R}_{1}\right) & \equiv \exists \overrightarrow{x^{\prime}} \cdot B_{1}(\vec{x})\left[\overrightarrow{x^{\prime}} / \vec{x}\right] \wedge \mathcal{R}_{1}\left(\vec{x}, \overrightarrow{x^{\prime}}\right) \\
& \equiv \exists x^{\prime}, y^{\prime}, z^{\prime} \cdot(\neg x \wedge y \wedge \neg)\left[x^{\prime}, y^{\prime}, z^{\prime} / x, y, z\right] \wedge\left(\neg x \wedge x^{\prime} \wedge y=y^{\prime} \wedge z=z^{\prime}\right) \\
& \equiv \exists x^{\prime}, y^{\prime}, z^{\prime} \cdot(\neg x \wedge y \wedge \neg z)\left[x^{\prime}, y^{\prime}, z^{\prime} / x, y, z\right] \wedge\left(\neg x \wedge x^{\prime} \wedge y=y^{\prime} \wedge z=z^{\prime}\right) \\
& \equiv \exists x^{\prime}, y^{\prime}, z^{\prime} .\left(\neg x^{\prime} \wedge y^{\prime} \wedge \neg z^{\prime}\right) \wedge\left(\neg x \wedge x^{\prime} \wedge y=y^{\prime} \wedge z=z^{\prime}\right) \\
& \equiv \exists x^{\prime}, y^{\prime}, z^{\prime} . \text { False } \\
& \equiv \text { False }
\end{aligned}
$$

So B_{1} has no \mathcal{R}_{1} predecessors. Similarly, one can check that $\operatorname{Prev}\left(B_{1}, \mathcal{R}_{2}\right) \equiv$ False. Finally, we compute:

$$
\begin{aligned}
\operatorname{Prev}\left(B_{1}, \mathcal{R}_{3}\right) & \equiv \exists \overrightarrow{x^{\prime}} \cdot B_{1}(\vec{x})\left[\overrightarrow{x^{\prime}} / \vec{x}\right] \wedge \mathcal{R}_{3}\left(\vec{x}, \overrightarrow{x^{\prime}}\right) \\
& \equiv \exists x^{\prime}, y^{\prime}, z^{\prime} .(\neg x \wedge y \wedge \neg z)\left[x^{\prime}, y^{\prime}, z^{\prime} / x, y, z\right] \wedge\left(x=x^{\prime} \wedge y=y^{\prime} \wedge z=\neg z^{\prime}\right) \\
& \equiv \exists x^{\prime}, y^{\prime}, z^{\prime} .\left(\neg x^{\prime} \wedge y^{\prime} \wedge \neg z^{\prime}\right) \wedge\left(x=x^{\prime} \wedge y=y^{\prime} \wedge z=\neg z^{\prime}\right) \\
& \equiv \exists x^{\prime}, y^{\prime}, z^{\prime} . \neg x \wedge \neg x^{\prime} \wedge y \wedge y^{\prime} \wedge z \wedge \neg z^{\prime} \\
& \equiv \neg x \wedge y \wedge z
\end{aligned}
$$

So,

$$
\begin{aligned}
B_{2} & \equiv \text { error } \vee \operatorname{Prev}\left(B_{1}, \mathcal{R}\right) \\
& \equiv(\neg x \wedge y \wedge \neg z) \vee \text { False } \vee \text { False } \vee(\neg x \wedge y \wedge z) \\
& \equiv \neg x \wedge y
\end{aligned}
$$

For the next iteration we check that $\operatorname{Prev}\left(B_{2}, \mathcal{R}_{1}\right)=F$ alse and $\operatorname{Prev}\left(B_{2}, \mathcal{R}_{2}\right)=$ False, because $\neg x^{\prime} \wedge y^{\prime}$ contradict both \mathcal{R}_{1} and \mathcal{R}_{2}.
Then we compute

$$
\begin{aligned}
\operatorname{Prev}\left(B_{2}, \mathcal{R}_{3}\right) & \equiv \exists \overrightarrow{x^{\prime}} \cdot B_{2}(\vec{x})\left[\overrightarrow{x^{\prime}} / \vec{x}\right] \wedge \mathcal{R}_{3}\left(\vec{x}, \overrightarrow{x^{\prime}}\right) \\
& \equiv \exists x^{\prime}, y^{\prime}, z^{\prime} \cdot(\neg x \wedge y)\left[x^{\prime}, y^{\prime}, z^{\prime} / x, y, z\right] \wedge\left(x=x^{\prime} \wedge y=y^{\prime} \wedge z=\neg z^{\prime}\right) \\
& \left.\equiv \exists x^{\prime}, y^{\prime}, z^{\prime} \cdot\left(\neg x^{\prime} \wedge y^{\prime}\right) \wedge\left(x=x^{\prime} \wedge y=y^{\prime} \wedge z=\neg z^{\prime}\right)\right) \\
& \equiv \exists x^{\prime}, y^{\prime}, z^{\prime} \cdot\left(\neg x \wedge \neg x^{\prime} \wedge y \wedge y^{\prime} \wedge z=\neg z^{\prime}\right) \\
& \equiv \exists z^{\prime} \cdot\left(\neg x \wedge y \wedge z=\neg z^{\prime}\right) \\
& \equiv \neg x \wedge y
\end{aligned}
$$

Hence

$$
B_{3} \equiv \operatorname{error} \vee \operatorname{Prev}\left(B_{2}, \mathcal{R}_{1}\right) \equiv(\neg x \wedge y \wedge \neg z) \vee(\neg x \wedge y) \equiv \neg x \wedge y
$$

Clearly, $B_{2} \equiv B_{3}$, so this is the smallest fixed point, and represents the set of states where $\mathbf{E}[$ True \mathbf{U} error $]$ holds.
Step 3d ($\neg \mathbf{E}[$ True \mathbf{U} error $])$: This is easy again, we just negate the result of Step 3c, and obtain $\neg(\neg x \wedge y) \equiv x \vee \neg y$
Step 4, conclusion. The formula AG (ᄀerror) holds in all the states that satisfy $x \vee \neg y$, so in particular it holds in the initial state $(\neg x \wedge \neg y \wedge \neg z)$. So the program cannot enter the error state.

