
Exercise Week 3: Symbolic Model Checking CTL

Jaco van de Pol

November 16, 2010

1 The Problem

Consider the following program, where x, y, z are boolean variables, and the
guarded commands are executed non-deterministically:

do
¬x → x := 1

x ∧ ¬y → y := 1
→ z := ¬z

od

Define the following properties on this system:

init :≡ ¬x ∧ ¬y ∧ ¬z
error :≡ ¬x ∧ y ∧ ¬z

pay :≡ y = ¬z
goal :≡ x ∧ y ∧ z

Question: Check with symbolic model checking in which states the following
CTL properties hold:

• AG (¬error)

• E[¬pay U goal]

• EG y

2 The solution

I will only work out the first example.
Step 1: Formalize the program’s transition relation as a Boolean formula.
Using a BDD package, this could be transformed to a BDD.
It is convenient to first formalize each command, and subsequently combine
them by disjunction. This also gives us abbreviations that can be used later on.
Written as a formula, with variables x, y, z (state before transition) and x′, y′, z′

(state after transition) we get:

1



R1 :≡ ¬x ∧ x′ ∧ y = y′ ∧ z = z′

R2 :≡ x ∧ ¬y ∧ y′ ∧ x = x′ ∧ z = z′

≡ x ∧ x′ ∧ ¬y ∧ y′ ∧ z = z′

R3 :≡ x = x′ ∧ y = y′ ∧ z = ¬z′

R :≡ R1 ∨R2 ∨R3

Step 2: rewrite the formula in the fragment EG, EU, EX.

AG (¬error)
≡ ¬EF (¬¬error)
≡ ¬E[TrueU error]

Step 3: now we compute formulas (computers would compute BDDs), rep-
resenting the set of states that satisfy the subformulas. We do this bottom
up.
Step 3a (True): this is easy, just the formula True (or leaf 1 in BDDs). Note
that this formula represents all 8 possible states.
Step 3b (error): this is also easy. The formula is just ¬x∧y∧¬z, by definition.
Note that this formula represents a unique state.
Step 3c (E[TrueU error]): All the work is in this step. For this EU formula
we need to compute the least fixed point of a function (predicate transformer).

Lfp(Z 7→ error ∨ (True ∧EXZ))

Here EX is computed using the Prev function, which is defined by:

Prev(S,R) :≡ ∃~x′.
(
S(~x)[~x′/~x] ∧R(~x, ~x′)

)
Extra explanation. In other words, we must compute the least fixed point of
the function τ , defined by τ(Z) = error ∨ Prev(Z,R). In order to do this, we
frequently must compute ∃~v. X ∧R for several X. Because R is biggish, we will
often do this by using the following:

∃~v. X ∧R
≡ ∃~v. X ∧ (R1 ∨R2 ∨R3)
≡ ∃~v. (X ∧R1) ∨ (X ∧R2) ∨ (X ∧R3)
≡ (∃~v. X ∧R1) ∨ (∃~v.X ∧R2) ∨ (∃~v.X ∧R3)

(actually, this corresponds to the idea of disjunctive partitioning from the lecture
in week 2).
Another useful trick is the following: ∃x. P ≡ P [0/x] ∨ P [1/x], hence in partic-
ular:

∃x. P ∧ x∧Q ≡ (P [0/x]∧ 0∧Q[0/x])∨ (P [1/x]∧ 1∧Q[1/x]) ≡ P [1/x]∧Q[1/x]

And similarly,
∃x. P ∧ ¬x ∧Q ≡ P [0/x] ∧Q[0/x]

2



In particular, if x doesn’t occur in P and Q we can just drop it:

∃x. P ∧ x ∧Q ≡ ∃x. P ∧ ¬x ∧Q ≡ P ∧Q

Continue step 3c. So let us start. We must apply τ repeatedly, starting from
the empty set. So we get:

B0 ≡ False

Next, we compute:

B1 ≡ error ∨ Prev(B0,R)
≡ error ∨ ∃~x′.

(
False[~x′/~x] ∧R(~x, ~x′)

)
≡ error ∨ ∃~x′. False
≡ error ∨ False
≡ ¬x ∧ y ∧ ¬z

Next, for B2 we must compute Prev(B1,R). As explained above, we do this in
three steps:

Prev(B1,R1) ≡ ∃~x′. B1(~x)[~x′/~x] ∧R1(~x, ~x′)
≡ ∃x′, y′, z′. (¬x ∧ y ∧ ¬z)[x′, y′, z′/x, y, z] ∧ (¬x ∧ x′ ∧ y = y′ ∧ z = z′)
≡ ∃x′, y′, z′. (¬x ∧ y ∧ ¬z)[x′, y′, z′/x, y, z] ∧ (¬x ∧ x′ ∧ y = y′ ∧ z = z′)
≡ ∃x′, y′, z′. (¬x′ ∧ y′ ∧ ¬z′) ∧ (¬x ∧ x′ ∧ y = y′ ∧ z = z′)
≡ ∃x′, y′, z′. False
≡ False

So B1 has no R1 predecessors. Similarly, one can check that Prev(B1,R2) ≡
False. Finally, we compute:

Prev(B1,R3) ≡ ∃~x′. B1(~x)[~x′/~x] ∧R3(~x, ~x′)
≡ ∃x′, y′, z′. (¬x ∧ y ∧ ¬z)[x′, y′, z′/x, y, z] ∧ (x = x′ ∧ y = y′ ∧ z = ¬z′)
≡ ∃x′, y′, z′. (¬x′ ∧ y′ ∧ ¬z′) ∧ (x = x′ ∧ y = y′ ∧ z = ¬z′)
≡ ∃x′, y′, z′.¬x ∧ ¬x′ ∧ y ∧ y′ ∧ z ∧ ¬z′

≡ ¬x ∧ y ∧ z

So,
B2 ≡ error ∨ Prev(B1,R)

≡ (¬x ∧ y ∧ ¬z) ∨ False ∨ False ∨ (¬x ∧ y ∧ z)
≡ ¬x ∧ y

For the next iteration we check that Prev(B2,R1) = False and Prev(B2,R2) =
False, because ¬x′ ∧ y′ contradict both R1 and R2.
Then we compute

Prev(B2,R3) ≡ ∃~x′. B2(~x)[~x′/~x] ∧R3(~x, ~x′)
≡ ∃x′, y′, z′. (¬x ∧ y)[x′, y′, z′/x, y, z] ∧ (x = x′ ∧ y = y′ ∧ z = ¬z′)
≡ ∃x′, y′, z′. (¬x′ ∧ y′) ∧ (x = x′ ∧ y = y′ ∧ z = ¬z′))
≡ ∃x′, y′, z′. (¬x ∧ ¬x′ ∧ y ∧ y′ ∧ z = ¬z′)
≡ ∃z′. (¬x ∧ y ∧ z = ¬z′)
≡ ¬x ∧ y

3



Hence

B3 ≡ error ∨ Prev(B2,R1) ≡ (¬x ∧ y ∧ ¬z) ∨ (¬x ∧ y) ≡ ¬x ∧ y

Clearly, B2 ≡ B3, so this is the smallest fixed point, and represents the set of
states where E[TrueU error] holds.
Step 3d (¬E[TrueU error]): This is easy again, we just negate the result of
Step 3c, and obtain ¬(¬x ∧ y) ≡ x ∨ ¬y
Step 4, conclusion. The formula AG (¬error) holds in all the states that
satisfy x ∨ ¬y, so in particular it holds in the initial state (¬x ∧ ¬y ∧ ¬z). So
the program cannot enter the error state.

4


