Exercise Week 3: Symbolic Model Checking CTL

Jaco van de Pol

November 16, 2010

1 The Problem

Consider the following program, where x,y,z are boolean variables, and the
guarded commands are executed non-deterministically:

do
r — x:=1
Ay — y:i=1
— z:i=-z
od
Define the following properties on this system:
it = Ay Nz
error = X NANyYyN-z
pay = Y=~z
goal = TAYANz

Question: Check with symbolic model checking in which states the following
CTL properties hold:

o AG (—error)
e E[-pay U goal]
e EGy

2 The solution

I will only work out the first example.

Step 1: Formalize the program’s transition relation as a Boolean formula.
Using a BDD package, this could be transformed to a BDD.

It is convenient to first formalize each command, and subsequently combine
them by disjunction. This also gives us abbreviations that can be used later on.
Written as a formula, with variables x, y, z (state before transition) and ', y', 2’
(state after transition) we get:

Ri = A’ ANy=y ANz=2
Roe = zAyANy Az=2'Nz=2
= AN A YAy Nz=2
Ry = z=2d'Ny=y ANz=-2

R = RiVRaVRs3

Step 2: rewrite the formula in the fragment EG, EU, EX.

AG (—error)
—EF (——error)
—E[TrueU error]

Step 3: now we compute formulas (computers would compute BDDs), rep-
resenting the set of states that satisfy the subformulas. We do this bottom
up.

Step 3a (T'rue): this is easy, just the formula True (or leaf 1 in BDDs). Note
that this formula represents all 8 possible states.

Step 3b (error): this is also easy. The formula is just 2z AyA—z, by definition.
Note that this formula represents a unique state.

Step 3c (E[TrueUerror]): All the work is in this step. For this EU formula
we need to compute the least fixed point of a function (predicate transformer).

Lfp(Z — errorV (True NEX Z))
Here EX is computed using the Prev function, which is defined by:
Prev(S,R) := 32’ (S(@)[«' /7] A R(Z,27))

Extra explanation. In other words, we must compute the least fixed point of
the function 7, defined by 7(Z) = error V Prev(Z,R). In order to do this, we
frequently must compute 3v. X AR for several X. Because R is biggish, we will
often do this by using the following:

X AR

J0. X A (Rl V Ry V R3)

34 (X /\Rl) \Y (X /\RQ) \Y (X /\Rg)

(30. X AR1)V (30.X ARa) V (35.X ARs)

(actually, this corresponds to the idea of disjunctive partitioning from the lecture
in week 2).

Another useful trick is the following: Jz. P = P[0/x] V P[1/x], hence in partic-
ular:

. PAzAQ = (P0/z] A\OAQ[O/z]) V (P[1/z] AN 1AQI[L/x]) = P[1/2] AQ[1/x]

And similarly,
Jz. PA-xzAQ = Pl0/z] A Q[0/x]

In particular, if z doesn’t occur in P and @) we can just drop it:
dJr. PNz ANQ=3x. PNz ANQ=PAQ

Continue step 3c. So let us start. We must apply 7 repeatedly, starting from
the empty set. So we get:

By = False
Next, we compute:

By error V Prev(By, R)

error V 3a’. (False[ag’/f] AR(Z, 3;’))
error vV 3z'. False

error V False

T ANYN-z

Next, for By we must compute Prev(B, R). As explained above, we do this in
three steps:

Prev(Bi,R1) 3z, By(Z)[#' /2] A R (Z,)

'y 2 (e Ay A=)y 2y A A (e AT Ay =y Az =2
Elac,y 2z ANy N2y 2 ey, 2l AN(me A ANy =y Az =2")
Wy 2 (e AY AZYAN (AN ANy=y Az=2)
dz',y', 2. False

False

So By has no R predecessors. Similarly, one can check that Prev(Bi,Rs) =
False. Finally, we compute:

Prev(By,R3) aﬂamﬁmAm@@

'y, 2 (e Ay A2y 2 ey 2l AN (=2 Ay =y Az =—2)
Wy, 2 (2 AY A2 YAN (=2 Ny=y Az=-2)

A2’y 2 A Ay Ay Az A2

ﬁx/\y/\z

So,
By error \V Prev(B1,R)
(mx ANy A —-z)V FalseV False V (mx Ay A z)

T Ay

For the next iteration we check that Prev(By, R1) = False and Prev(Bs, Rs) =
False, because -z’ Ay’ contradict both Ry and Ro.
Then we compute

Prev(Ba, Rs3) 2. By(Z) [/x]/\Rg(x)

32y, (2 Ay)la '] A (=2 Ay =y Ao =)
Wy 2 (' AY YA (=" ANy=y Az=-2"))
'y 2 (e A ANy AY ANz =2

. (—x Ay Az=-2)

T Ay

Hence
Bs =errorV Prev(Ba, R1) = (mz AyA—z)V (mz Ay) =z Ay

Clearly, B, = Bj, so this is the smallest fixed point, and represents the set of
states where E[True U error] holds.

Step 3d (—E[TrueUerror]): This is easy again, we just negate the result of
Step 3c, and obtain =(—z Ay) =z V —y

Step 4, conclusion. The formula AG (—error) holds in all the states that
satisfy = V =y, so in particular it holds in the initial state (-z A =y A =2). So
the program cannot enter the error state.

