Cryptography Pearl 100 - 2021-2022 - Practice Exam 1

Course: B-CS-MOD01-1A-202001022 B-CS Pearls of Computer Science Core 202001022

	Contents:	Pages:
	A. Front page	1
•	B. Questions	5

Generated on: Aug 26, 2021

Cryptography Pearl 100 - 2021-2022 - Practice Exam 1

Course: B-CS Pearls of Computer Science Core 202001022

This is a practice exam. Please use it to learn for the real exam.

- You may use 1 A4 sheet (both sides) with your own notes for this practice exam, as well as the calculator as provided in the digital exam (Remindo).
- Your own calculators, laptops, mobile phones, books etc. are not allowed.
- In order to simulate the real exam, it is recommended that you try to finish this practice exam within 60 minutes.

Number of questions: 6

- 1 Please select the correct answer for each subquestion. There is only **one correct answer per subquestion**.
- 1 pt. a. (a) Is the RSA cryptosystem perfectly secure?
 - a. NO
 - **b.** YES
- 1 pt. **b.** (b) Assume that the ciphertext QGBTM was created using the Vigenère cipher with the key BC. What is the underlying plaintext?
 - a. OFFER
 - **b.** REACH
 - C. PEARL
 - d. SIGHT
- 1 pt. **c.** (c) Let (N, e) = (23711, 7) be an RSA public key. Note that N is not small, so do NOT try to factor it. Furthermore, let $c = 23583 \mod N$ be an RSA encryption under the given public key (N, e).

You can assume that *c* is an encryption of the following messages, but which of them does *c* really encrypt?

- **a.** 1
- **b.** 2
- **c.** 23709
- **d.** 23710

1 pt. d. (d) What is the result of the computation $12^{3386092} - 88 \mod 13$?

- **a.** 0
- **b.** 1
- **c.** 2
- **d.** 3
- **e**. 4
- 1 pt. **e.** (e) Let N = 15 be a product of two distinct primes and let e = 2. Can we use (N, e) = (15, 2) as a public key in the RSA cryptosystem (i.e., can (N, e) be a valid public key output of the RSA key generation)?
 - a. YES
 - b. NO

- 2 The following questions can have more than one correct answer. To get full points, you need to select *all* correct answers. You get points deducted for each selected wrong answer.
- ³ pt. **a.** (a) Select *all* elements from the following list that are contained in \mathbb{Z}_{14}^* .
 - **a.** 0
 - **b.** 1
 - **c.** 2
 - **d.** 3
 - **e**. 4
 - **f.** 5
 - **g.** 6
 - h. 7
 - i. 8
 - **j**. 9
 - **k.** 10
 - I. 11
 - **m.** 12
 - **n.** 13
- $_{\rm 6 \ pt.}$ b. (b) Let (N,e)=(119,5) be an RSA public key. Which of the following statements are correct?
 - **a.** c=32 is a valid RSA *encryption* under the given public key (N,e) and it encrypts the plaintext message m=2.
 - b. $\sigma=6~$ is a valid RSA signature for the given public key (N,e) and it signs the message m=41 .
 - c. $\sigma=1$ is a valid RSA *signature* for the given public key (N,e) and it signs the message m=1 .
 - d. c = 120 is a valid RSA *encryption* under the given public key (N, e) and it encrypts the plaintext message m = 1.

3 Compute value $x \in \mathbb{Z}$ such that $11 \cdot x \mod 22 = 1$. If there is no such value x, then type in ² pt. NO as your solution.

x =

Assume that 31 parties want to securely communicate by using secret-key encryption. This implies
² pt. that they first have to exchange a unique secret key between any two of them. How many secret keys have to be exchanged in total?

The number of secret keys to be exchanged in total =

5 Consider the following plaintext message (a 13-bit string):

1011000101101

Use the table below to *encrypt* this message in the **CBC**-mode by using the following 4-bit block cipher:

 $\mathsf{E}_k(b_3b_2b_1b_0) = b_3b_2b_1b_0 \oplus k$

with the bit-string k = 0010 as secret key (note that $b_3b_2b_1b_0$ denotes an arbitrary 4-bit plaintext message). As initialization vector for the CBC-mode, use the bit-string IV = 1110.

If desirable, you can use "optional"-cells for intermediate results (they won't give you any points though).

Block nr. j	Plaintext block <i>mj</i>	a(0 pt.) (optional - no points)	b. (0 pt.) (optional - no points)	Ciphertext block <i>cj</i>
j = 1	c. (0 pt.)	d. (0 pt.)	e(0 pt.)	f. (2 pt.)
	(fill in)	(optional - no points)	(optional - no points)	(fill in)
j = 2	g. (0 pt.)	h(0 pt.)	i(0 pt.)	j. (2 pt.)
	(fill in)	(optional - no points)	(optional - no points)	(fill in)
j = 3	k. (0 pt.)	l(0 pt.)	m(0 pt.)	n. (2 pt.)
	(fill in)	(optional - no points)	(optional - no points)	(fill in)
j = 4	o. (0 pt.)	p. (0 pt.)	q. (0 pt.)	r. (2 pt.)
	(fill in)	(optional - no points)	(optional - no points)	(fill in)

NOTE: Make sure that you only type in (sequences of) 0's and 1's! Any other format will be ignored and regarded as a wrong answer.

Hint. You need to use "padding" to solve this assignment successfully.

6 Let p = 7, q = 13, and N = pq = 91. Assume that we use (N, e) = (91, 29) as the public key in the RSA encryption scheme.

(a) What is Euler's totient function φ evaluated on *N*?

- $\varphi(N) = a.$ (2 pt.)
- 1 pt. b. (b) Which of the following equations can be used to deduce a value x such that $e \cdot x \mod \varphi(N) = 1$?
 - a. $-1 = 7 \cdot (-2) + 13 \cdot 1$
 - **b.** $1 = 5 \cdot 29 + (-2) \cdot 72$
 - c. $1 = (-7) \cdot 91 + 22 \cdot 29$
 - **d.** $1 = 91 \cdot 19 72 \cdot 24$

(c) What is the RSA secret key $d \ge 0$ that corresponds to the public key (N, e) = (91, 29)?

d = **c.**(2 pt.)