Discrete Mathematics for Computer Science, January 14, 2021; Part 1 Solution/Correction standard

1. (a)
$\forall x \in U: x \notin A \vee x \notin B$
[3 pt]

$$
\forall x \in A: x \notin B \wedge \forall x \in B: x \notin A
$$

(b)

$$
\forall x \in C: x \in a \wedge \exists x \in B: x \notin B
$$

For each expression that is not logically equivalent to the ones above: 0 pt .
2.

(1)	q	Premise
(2)	$q \rightarrow(u \wedge s)$	Premise
(3)	$u \wedge s$	$(1),(2), \mathrm{R} 1$
(4)	u	(3), R7
(5)	$u \rightarrow r$	Premise
(6)	r	(4), (5), R1
(7)	s	(3), L3, R1
(8)	$r \wedge s$	(6), (7), R4
(9)	$(r \wedge s) \rightarrow(p \vee t)$	Premise
(10)	$p \vee t$	(8), (9), R1
(11)	$\neg t$	Premise
(12)	p	(10), (11), L3, R5

For each forgotten Law or Rule: -0.5 pt .
If deduction contains a step that is not logically correct: at most 1 pt for the entire exercise.
3. We show that $(A-B) \cup(B-A) \subseteq(A \cup B)-(A \cap B)$ and $(A \cup B)-(A \cap B) \subseteq(A-B) \cup(B-A)$.
(i) Proof of $(A-B) \cup(B-A) \subseteq(A \cup B)-(A \cap B)$.

Let $x \in(A-B) \cup(B-A)$. Then $x \in(A-B) \vee x \in(B-A)$
$x \in(A-B) \rightarrow x \in A \wedge x \notin B \rightarrow x \in A \cup B \wedge x \notin B \cap A$
$x \in(B-A) \rightarrow x \in B \wedge x \notin A \rightarrow x \in B \cup A \wedge x \notin A \cap B$.
Hence, in both cases $x \in(A \cup B)-(A \cap B)$.
(ii) Proof of $(A \cup B)-(A \cap B) \subseteq(A-B) \cup(B-A)$.

Let $x \in(A \cup B)-(A \cap B)$. Then $(x \in A \vee x \in B) \wedge x \notin A \cap B$.
So $x \in A \wedge x \notin A \cap B$ or $x \in B \wedge x \notin A \cap B$.
$x \in A \wedge x \notin A \cap B \rightarrow x \in A \wedge x \notin B \rightarrow x \in A-B$.
$x \in B \wedge x \notin A \cap B \rightarrow x \in B \wedge x \notin A \rightarrow x \in B-A$.
So $x \in(A-B) \cup(B-A)$.
4. Basis step for $n=2,3$:

$$
\begin{align*}
& a_{2}=\frac{1}{2} \cdot a_{1}+\frac{1}{2} \cdot a_{0}=\frac{1}{2} \text { and } 0 \leq \frac{1}{2} \leq 1 \tag{0.5pt}\\
& a_{3}=\frac{1}{3} \cdot a_{2}+\frac{2}{3} \cdot a_{1}=\frac{5}{6} \text { and } 0 \leq \frac{5}{6} \leq 1 \tag{1pt}
\end{align*}
$$

Induction step: Let $k \geq 3$ and suppose that for all $p \in\{2,3, \ldots, k\}$:

$$
\begin{equation*}
0 \leq a_{p} \leq 1 \tag{0.5pt}
\end{equation*}
$$

We must show that the induction hypothesis implies:

$$
\begin{equation*}
0 \leq a_{k+1} \leq 1 \tag{0.5pt}
\end{equation*}
$$

By the definition of the recursion we can write:

$$
\begin{equation*}
a_{k+1}=\frac{1}{k+1} \cdot a_{k}+\frac{k}{k+1} \cdot a_{k-1} \tag{0.5pt}
\end{equation*}
$$

By the IH, we have that:

$$
\begin{equation*}
0 \leq \frac{1}{k+1} \cdot a_{k} \leq \frac{1}{k+1} \text { and } 0 \leq \frac{k}{k+1} \cdot a_{k-1} \leq \frac{k}{k+1} \tag{0.5pt}
\end{equation*}
$$

And hence, we can write:

$$
0 \leq a_{k+1} \leq \frac{1}{k+1}+\frac{k}{k+1}=1
$$

[0.5 pt]
(From the proof it must be crystal clear whàt is supposed [1 pt] and whàt must be proved [1 pt]. In case the induction hypothesis is not correctly formulated or the proof is not clearly written down: at most $\mathbf{1} \mathbf{~ p t ~ f o r ~ t h e ~ e n t i r e ~ e x e r c i s e) ~}$
5. We will prove that $f\left(A_{1} \cap A_{2}\right) \subseteq f\left(A_{1}\right) \cap f\left(A_{2}\right)$ and that $f\left(A_{1}\right) \cap f\left(A_{2}\right) \subseteq f\left(A_{1} \cap A_{2}\right)$.

Proof of $f\left(A_{1} \cap A_{2}\right) \subseteq f\left(A_{1}\right) \cap f\left(A_{2}\right)$:
Let $b \in f\left(A_{1} \cap A_{2}\right)$. Then we know that there is an $x \in A_{1} \cap A_{2}$ such that $f(x)=b$.
Since $x \in A_{1} \cap A_{2}$, we have that $x \in A_{1}$ and $x \in A_{2}$.
So $b \in f\left(A_{1}\right)$ and $b \in f\left(A_{2}\right)$ and hence $b \in f\left(A_{1}\right) \cap f\left(A_{2}\right)$.

Proof of $f\left(A_{1}\right) \cap f\left(A_{2}\right) \subseteq f\left(A_{1} \cap A_{2}\right)$:
Let $b \in f\left(A_{1}\right) \cap f\left(A_{2}\right)$. Then we know that there exist $x \in A_{1}$ and $y \in A_{2}$ such that $f(x)=$ $f(y)=b$.
Since f is one-to one, we must have that $x=y$ because x and y have the same image in B under f.
So $x \in A_{1} \cap A_{2}$ and hence $b \in f\left(A_{1} \cap A_{2}\right)$.
6. (a) (i) R is reflexive since $|x-x|=0 \in \mathbb{Z}$
(ii) R is symmetric because if $|x-y| \in \mathbb{Z}$, then we have that $|y-x| \in \mathbb{Z}$ because $|x-y|=|y-x|$ (since $y-x=-(x-y)$).
(iii) R is transitive because if $|x-y| \in \mathbb{Z}$ and $|y-z| \in \mathbb{Z}$, we have that $|x-z| \in \mathbb{Z}$

$$
|x-y| \in \mathbb{Z} \rightarrow x-y \in \mathbb{Z} \text { and }|y-z| \in \mathbb{Z} \rightarrow y-z \in \mathbb{Z}
$$

So $x-z \in \mathbb{Z}$ since $x-z=x-y+y-z$.

$$
\text { So } x-z \in \mathbb{Z} \rightarrow|x-z| \in \mathbb{Z} \text {. }
$$

(b) If $|x-y| \in \mathbb{Z}$, then $x-y \in \mathbb{Z}$

That means that $x=y+k$ where k is an integer.
So we have that $[1.5]=\{1.5+k, k \in \mathbb{Z}\}$

