Discrete Mathematics for Computer Science, January 14, 2021; Part 1 Solution/Correction standard

1. (a)
$$\forall x \in U: x \notin A \lor x \notin B$$
 [3 pt]

$$\forall x \in A \colon x \notin B \land \forall x \in B \colon x \notin A.$$
 [3 pt]

[6 pt]

(b)
$$\forall x \in C : x \in a \land \exists x \in B : x \notin B.$$
 [3 pt]

For each expression that is not logically equivalent to the ones above: 0 pt.

0	
2	٠

(1)	q	Premise
(2)	$q \to (u \land s)$	Premise
(3)	$u \wedge s$	(1), (2), R1
(4)	u	(3), R7
(5)	$u \rightarrow r$	Premise
(6)	r	(4), (5), R1
(7)	s	(3), L3, R1
(8)	$r \wedge s$	(6), (7), R4
(9)	$(r \land s) \to (p \lor t)$	Premise
(10)	$p \lor t$	(8), (9), R1
(11)	$\neg t$	Premise
(12)	p	(10), (11), L3, R5

For each forgotten Law or Rule: -0.5 pt.

If deduction contains a step that is not logically correct: at most 1 pt for the entire exercise.

3.	We show that $(A - B) \cup (B - A) \subseteq (A \cup B) - (A \cap B)$ and $(A \cup B) - (A \cap B) \subseteq (A - B) \cup (B - A)$.	[1 pt]
	(i) Proof of $(A - B) \cup (B - A) \subseteq (A \cup B) - (A \cap B)$. Let $x \in (A - B) \cup (B - A)$. Then $x \in (A - B) \lor x \in (B - A)$ $x \in (A - B) \rightarrow x \in A \land x \notin B \rightarrow x \in A \cup B \land x \notin B \cap A$ $x \in (B - A) \rightarrow x \in B \land x \notin A \rightarrow x \in B \cup A \land x \notin A \cap B$. Hence, in both cases $x \in (A \cup B) - (A \cap B)$.	[0.5 pt] [1 pt] [1 pt] [0.5 pt]
	(ii) Proof of $(A \cup B) - (A \cap B) \subseteq (A - B) \cup (B - A)$. Let $x \in (A \cup B) - (A \cap B)$. Then $(x \in A \lor x \in B) \land x \notin A \cap B$. So $x \in A \land x \notin A \cap B$ or $x \in B \land x \notin A \cap B$. $x \in A \land x \notin A \cap B \rightarrow x \in A \land x \notin B \rightarrow x \in A - B$. $x \in B \land x \notin A \cap B \rightarrow x \in B \land x \notin A \rightarrow x \in B - A$. So $x \in (A - B) \cup (B - A)$.	[0.5 pt] [0.5 pt] [0.5 pt] [0.5 pt]

Discrete Mathematics for Computer Science, January 14 2021; Part 2 Solution/Correction standard

4. Basis step for n = 2, 3:

$$a_2 = \frac{1}{2} \cdot a_1 + \frac{1}{2} \cdot a_0 = \frac{1}{2} \text{ and } 0 \le \frac{1}{2} \le 1$$
 [0.5 pt]

$$a_3 = \frac{1}{3} \cdot a_2 + \frac{2}{3} \cdot a_1 = \frac{5}{6} \text{ and } 0 \le \frac{5}{6} \le 1$$
 [1 pt]

Induction step: Let
$$k \ge 3$$
 and suppose that for all $p \in \{2, 3, ..., k\}$: [1 pt]

$$0 \le a_p \le 1$$
 [0.5 pt]

[0.5 pt]

[0.5 pt]

We must show that the induction hypothesis implies:

$$0 \le a_{k+1} \le 1.$$
 [0.5 pt]

By the definition of the recursion we can write:

$$a_{k+1} = \frac{1}{k+1} \cdot a_k + \frac{k}{k+1} \cdot a_{k-1}$$
 [0.5 pt]

By the IH, we have that:

$$0 \le \frac{1}{k+1} \cdot a_k \le \frac{1}{k+1} \text{ and } 0 \le \frac{k}{k+1} \cdot a_{k-1} \le \frac{k}{k+1}$$
 [0.5 pt]

And hence, we can write:

$$0 \le a_{k+1} \le \frac{1}{k+1} + \frac{k}{k+1} = 1$$
 [0.5 pt]

(From the proof it must be crystal clear what is supposed **[1 pt]** and what must be proved **[1 pt]**. In case the induction hypothesis is not correctly formulated or the proof is not clearly written down: at most **1 pt** for the entire exercise)

5. We will prove that $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$ and that $f(A_1) \cap f(A_2) \subseteq f(A_1 \cap A_2)$. [1 pt]

Proof of $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$:[0.5 pt]Let $b \in f(A_1 \cap A_2)$. Then we know that there is an $x \in A_1 \cap A_2$ such that f(x) = b.[0.5 pt]Since $x \in A_1 \cap A_2$, we have that $x \in A_1$ and $x \in A_2$.[0.5 pt]So $b \in f(A_1)$ and $b \in f(A_2)$ and hence $b \in f(A_1) \cap f(A_2)$.[1 pt]

Proof of $f(A_1) \cap f(A_2) \subseteq f(A_1 \cap A_2)$: Let $b \in f(A_1) \cap f(A_2)$. Then we know that there exist $x \in A_1$ and $y \in A_2$ such that f(x) = f(y) = b. Since f is one-to one, we must have that x = y because x and y have the same image in Bunder f. So $x \in A_1 \cap A_2$ and hence $b \in f(A_1 \cap A_2)$. [1 pt]

6.	(a)	(i)	R is reflexive since $ x-x =0\in\mathbb{Z}$	[1 pt]
		(ii) (iii)	R is symmetric because if $ x - y \in \mathbb{Z}$, then we have that $ y - x \in \mathbb{Z}$ because $ x - y = y - x $ (since $y - x = -(x - y)$). R is transitive because if $ x - y \in \mathbb{Z}$ and $ y - z \in \mathbb{Z}$, we have that $ x - z \in \mathbb{Z}$	[1 pt]
			$ x-y \in\mathbb{Z} o x-y\in\mathbb{Z}$ and $ y-z \in\mathbb{Z} o y-z\in\mathbb{Z}$.	[1 pt]
			So $x - z \in \mathbb{Z}$ since $x - z = x - y + y - z$.	[0.5 pt]
			So $x - z \in \mathbb{Z} \to x - z \in \mathbb{Z}$.	[0.5 pt]
	(b)	If $ x $ The	$ y \in \mathbb{Z}$, then $x - y \in \mathbb{Z}$ at means that $x = y + k$ where k is an integer.	[1 pt]

So we have that $[1.5] = \{1.5 + k, k \in \mathbb{Z}\}$ [1 pt]