Discrete Mathematics for Computer Science, 27 October 2017 Solutions/Correction standard

1. Basis step for $n=0, n=1$ and $n=2$:
$a_{0}=1 \leq\left[\frac{8}{3}\right]^{0}, \quad a_{1}=2 \leq\left[\frac{8}{3}\right]^{1} \quad$ and $\quad a_{2}=7 \leq \frac{64}{9} \leq\left[\frac{8}{3}\right]^{2}$.
Induction step:
Let $k \geq 2$ and suppose that: $a_{p} \leq\left[\frac{8}{3}\right]^{p}$ for all $\quad 0 \leq p \leq k$ (Induction Hypothesis: IH).
We must show that IH implies: $a_{k+1} \leq\left[\frac{8}{3}\right]^{k+1}$.
Well, we have: $a_{k+1}=2 a_{k}+a_{k-1}+2 a_{k-2}$,
and by IH this is less than or equal to $2\left[\frac{8}{3}\right]^{k}+\left[\frac{8}{3}\right]^{k-1}+2\left[\frac{8}{3}\right]^{k-2}$.
So it suffices to show that: $\quad 2\left[\frac{8}{3}\right]^{k}+\left[\frac{8}{3}\right]^{k-1}+2\left[\frac{8}{3}\right]^{k-2} \leq\left[\frac{8}{3}\right]^{k+1}$.
Dividing both sides by $\left[\frac{8}{3}\right]^{k-2}$ yields: $\quad 2\left[\frac{8}{3}\right]^{2}+\left[\frac{8}{3}\right]+2 \leq\left[\frac{8}{3}\right]^{3}$,
which is obviously true since: $\quad 2 \cdot \frac{64}{9}+\frac{8}{3}+2=\frac{510}{27} \leq \frac{512}{27}=\left[\frac{8}{3}\right]^{3}$.
2. Suppose that f is onto and $g \circ f$ is one-to-one.

Let $b_{1}, b_{2} \in B$ be such that $g\left(b_{1}\right)=g\left(b_{2}\right)$. We must show that $b_{1}=b_{2}$.
Well, since f is onto, there exist $a_{1}, a_{2} \in A$ with $f\left(a_{1}\right)=b_{1}$ and $f\left(a_{2}\right)=b_{2}$.
Then we have $(g \circ f)\left(a_{1}\right)=g\left(f\left(a_{1}\right)\right)=g\left(b_{1}\right)=g\left(b_{2}\right)=g\left(f\left(a_{2}\right)\right)=(g \circ f)\left(a_{2}\right)$.
So $(g \circ f)\left(a_{1}\right)=(g \circ f)\left(a_{2}\right)$. Now $g \circ f$ is one-to-one implies that $a_{1}=a_{2}$.
So $b_{1}=f\left(a_{1}\right)=f\left(a_{2}\right)=b_{2}$. Hence g is one-to-one.
3. (i) R is reflexive since $(a, b) R(a, b)$ for all $(a, b) \in A$, because $a+b=b+a$.
(ii) R is symmetric since for all $(a, b),(c, d) \in A,(a, b) R(c, d)$ implies $(c, d) R(a, b)$, because if $a+d=b+c$, then also $c+b=d+a$.
(iii) R is transitive since for all $(a, b),(c, d),(e, f) \in A,(a, b) R(c, d)$ and $(c, d) R(e, f)$ implies $(a, b) R(e, f)$, because if both $a+d=b+c$ and $c+f=d+e$, then $a+c+d+f=b+c+d+e$. So $a+f=b+e$.
(iv) The blocks of the partion of A induced by R are the equivalence classes of R.

We have:

$$
\begin{aligned}
& {[(0,0)]=\{(0,0),(1,1),(2,2)\}=[(1,1)]=[(2,2)] ; \quad[(0,1)]=\{(0,1),(1,2)\}=[(1,2)] ;} \\
& {[(0,2)]=\{(0,2)\} ; \quad[(1,0)]=\{(1,0),(2,1)\}=[(2,1)] \quad \text { and } \quad[(2,0)]=\{(2,0)\} .}
\end{aligned}
$$

So the partition is: $\quad\{[(0,0)],[(0,1)],[(0,2)],[(2,1)],[(2,0)]\}$
$=\{\{(0,0),(1,1),(2,2)\},\{(0,1),(1,2)\},\{(0,2)\},\{(1,0),(2,1)\},\{(2,0)\}\}$.

