(a)

(b)

This is actually bubble sort. The outer loop iterates n times, the
inner loop on average n/2 times, so asymptotic compexity @(nQ).
It is an in—place sorting algorithm.

Use the Master Theorem, with a = 8 and b = 2, s0 E = log8/log2 =
3. f(n) € ©(n?) holds, so this is condition 2, so T'(n) € O(n3log(n)).

A is already a maxheap, so do nothing: complexity ©(0).
The tree is

If you traverse this tree in a pre—order way you encounter the
letters in the order OGCABFDENJHIMKL.

If you arrive in square (7, 7) then the optimal number number of
pearls is ¢(i, j) plus the maximum of the pearls from where you
come from, so the maximum of P(i—1,j) and P(i,j —1). So the
right answer is ii.

def maxpoints(c,n):
P=[[0 for j in range(n+1)] for i in range(n+1)]
for i in range(1l,n+1):
for j in range(l,n+1):

P[i][j] = max(P[i-1][j],P[i][j-11) + c[il[j]

return P[n] [n]
The complexity of this algorithm is ©(n?).



