1. (a) This is actually bubble sort. The outer loop iterates n times, the inner loop on average $n / 2$ times, so asymptotic compexity $\Theta\left(n^{2}\right)$. It is an in-place sorting algorithm.
(b) Use the Master Theorem, with $a=8$ and $b=2$, so $E=\log 8 / \log 2=$ 3. $f(n) \in \Theta\left(n^{3}\right)$ holds, so this is condition 2 , so $T(n) \in \Theta\left(n^{3} \log (n)\right)$.
2. (a) A is already a maxheap, so do nothing: complexity $\Theta(0)$.
(b) The tree is

If you traverse this tree in a pre-order way you encounter the letters in the order OGCABFDENJHIMKL.
(a) If you arrive in square (i, j) then the optimal number number of pearls is $c(i, j)$ plus the maximum of the pearls from where you come from, so the maximum of $P(i-1, j)$ and $P(i, j-1)$. So the right answer is ii.
(b) def maxpoints (c, n):

```
P=[[0 for j in range(n+1)] for i in range(n+1)]
    for i in range(1,n+1):
            for j in range(1,n+1):
                P[i][j] = max(P[i-1][j],P[i][j-1]) + c[i][j]
```

 return \(P\) [\(n][n]\)
 The complexity of this algorithm is $\Theta\left(n^{2}\right)$.

