
1. (a) This is actually bubble sort. The outer loop iterates n times, the
inner loop on average n/2 times, so asymptotic compexity Θ(n2).
It is an in–place sorting algorithm.

(b) Use the Master Theorem, with a = 8 and b = 2, so E = log8/log2 =
3. f(n) ∈ Θ(n3) holds, so this is condition 2, so T (n) ∈ Θ(n3log(n)).

2. (a) A is already a maxheap, so do nothing: complexity Θ(0).

(b) The tree is

O

/ \

G N

/ \ / \

C F J M

/ \ / \ / \ / \

A B D E H I K L

If you traverse this tree in a pre–order way you encounter the
letters in the order OGCABFDENJHIMKL.

(a) If you arrive in square (i, j) then the optimal number number of
pearls is c(i, j) plus the maximum of the pearls from where you
come from, so the maximum of P (i−1, j) and P (i, j−1). So the
right answer is ii.

(b) def maxpoints(c,n):

P=[[0 for j in range(n+1)] for i in range(n+1)]

for i in range(1,n+1):

for j in range(1,n+1):

P[i][j] = max(P[i-1][j],P[i][j-1]) + c[i][j]

return P[n][n]

The complexity of this algorithm is Θ(n2).

1


