Kenmerk: EWI2015/dmmp/013/BM

Exam Limits to Computing (201300042)

Thursday, October 29, 2015, 8:45 - 11:45

- Use of calculators, mobile phones, etc. is not allowed!
- This exam consists of four problems.
- Please start a new page for each problem.
- The total number of points is 63+7=70. The distribution of points is according to the following table.

1a: 6	2: 15	3a: 4	4a: 3
1b: 7		3b: 6	4b: 3
1c: 3	o-veri	3c: 4	4c: 3
	a A ha		4d: 3
			4e: 3
			4f: 3

1. Decidability and Recursive Enumerability

Consider the following problem:

$$\text{FixedPoint} = \big\{ g \in \mathcal{G} \mid \exists n \in \mathbb{N} : \varphi_g(n) = n \big\}.$$

This means that FIXEDPOINT contains all Gödel numbers of WHILE programs that output n on input n for at least one number $n \in \mathbb{N}$.

- (a) (6 points) Is FIXEDPOINT \in REC? Prove your answer.
- (b) (7 points) Is FIXEDPOINT $\in RE$? Prove your answer.
- (c) (3 points) Is FIXEDPOINT \in co-RE? Prove your answer.

2. NP-Completeness

Let G = (V, E) and H = (U, F) be undirected graphs. We call H a subgraph of G if there exists an injective mapping $\pi : U \to V$ such that the following holds: For all $a, b \in U$ with $\{a, b\} \in F$, we have $\{\pi(a), \pi(b)\} \in E$.

Less formally: H is a subgraph of G, if G contains a copy of H. Or: H is a subgraph of G if we can remove nodes and edges of G to obtain a graph that is isomorphic to H.

Let

$$SUBGRAPH = \{(G, H) \mid H \text{ is a subgraph of } G\}.$$

 $(15\ points)$ Prove that SubGraph is NP-complete.

Hint: CLIQUE is NP-hard.

3. Complexity Classes

Let $\mathsf{E} = \mathsf{DTime}\big(2^{O(n)}\big)$. Recall that $\mathsf{EXP} = \bigcup_{c>0} \mathsf{DTime}\big(2^{O(n^c)}\big)$.

- (a) (4 points) Prove that $E \subsetneq EXP$.
- (b) (6 points) Prove that E is not closed under polynomial-time many-one reductions. This means that there are problems A and B with $A \leq_{\mathbf{P}} B$ and $B \in \mathsf{E}$ and $A \notin \mathsf{E}$.
- (c) (4 points) Prove that E ≠ PSPACE.
 Remark: Just prove that the two classes differ, you do not have to prove that E ⊊ PSPACE or PSPACE ⊊ E and, most likely, your proof does not answer if one class is a subset of the other.

4. Questions

Are the following statements true or false? Justify your answers.

- (a) (3 points) If P = PSPACE, then NP = co-NP.
- (b) (3 points) 3SAT \in PSPACE.
- (c) (3 points) If 3-Coloring \in NL, then P = NP.
- (d) (3 points) For all $L \subseteq \mathbb{N}$, the following holds: If $L \leq H_0$, where H_0 denotes the special halting problem, then $L \notin \text{co-RE}$.
- (e) (3 points) For all $L \subseteq \mathbb{N}$, the following holds: If $L \in \mathsf{REC}$, then $\overline{L} = \mathbb{N} \setminus L \in \mathsf{RE}$.
- (f) (3 points) If NL = NP, then co- $NP \subsetneq PSPACE$.

C