
UNIVERSITEIT TWENTE.

Ten sample questions and answers from the
Examination Operating Systems of
29 January 2013

Read these instructions and the questions carefully! If the questions are unclear, you can ask for
clarification.

Please make sure that your name and student number appear on all answer sheets.

Your working time begins at 13:45 and ends at 17:15.

Try to give precise answers using appropriate terminology. For multiple-choice questions there
may be more than one correct answer; all of these must be selected for full marks.

Unreadable or extremely long answers will not be marked. Multiple-choice answers that are
ambiguous will not be marked either.

You are only allowed to use your writing materials during the exam.

All answers must be given in English.

Nr: 1.1

U: 1/2013, Model

Q: Consider the following code

for(i=0; i<20; i++)
 for(j=0; j<10; j++)
 a[i] = a[i] * j;

(a) Give an example of the spatial locality in the code
(b) Given an example of the temporal locality in the code

C: 2 credits T: T D: 5 min L: Easy

A: (a) An example of spatial locality: the array elements are read and written in
sequence determined by the outer loop. (1 credit)

(b) An example of temporal locality: the inner loop accesses i & j and the same array
element 10 (20) times in a row, or the variables i and j (1 credit)

Nr: 3.7

U: 1/2013, Model

Q: Consider the C program fragment below:

int main(int argc, char *argv[]) {
 pid_t pid=fork();
 printf("%s\n", argv[0]);
 if (pid==0) {
 static char *argv[]={"echo","Foo",NULL};
 execv("/bin/echo",argv);
 exit(127);
 } else {
 waitpid(pid,0,0);
 }
 return 0;
}

Suppose the compiled version of the program is executed as “./a.out Foo Bar”.

(a) What is the actual output of the program? Why?
(b) Is the exit function ever called? Why?

C: 7 credits T: T D: 5 min L: Easy

A: (a) The actual output is
./a.out  forgetting one of these costs 1 credit
./a.out
Foo

Both the parent and the child process print argv[0], which will be ./a.out. Then
the child process will execute the echo command that prints the argument Foo.
(4 credits)

(b) exit(127) is never called because exec loads a new image in the current process,
unless of course the fork() or the execv() fails…. (3 credits)

Nr: 4.3

U: 1/2013, Model

Q: Provide two examples of an application where multithreading does not provide better
performance than a single-threaded solution. Explain why.

C: 2 credits T: T D: 4 min L: Medium

A: 1. Any kind of sequential program is not a good candidate to be threaded. An
example of this is a program that calculates an individual tax return (1 credit)

2. Another example is a “shell” program such as the C-shell or Korn shell. Such a
program must closely monitor its own working space such as open files,
environment variables, and current working directory (1 credit)

Nr: 5.1

U: 1/2013, Model

Q: Discuss briefly how the following pairs of scheduling criteria conflict in certain settings:
(a) CPU utilization and response time
(b) Average turnaround time and maximum waiting time
(c) I/O device utilization and CPU utilization

C: 3 credits T: T D: 6 min L: Medium

A: (a) CPU utilization and response time: CPU utilization is increased if the overhead
associated with context switching is minimized. The context switching
overheads could be lowered by performing context switches infrequently. This
could, however, result in increasing the response time for processes. (1 credit)

(b) Average turnaround time and maximum waiting time: Average turnaround time
is minimized by executing the shortest tasks first. Such a scheduling policy could,
however, starve long-running tasks and thereby increase their waiting time. (1
credit)

(c) I/O device utilization and CPU utilization: CPU utilization is maximized by running
long-running CPU-bound tasks without performing context switches. I/O device
utilization is maximized by scheduling I/O-bound jobs as soon as they become
ready to run, thereby incurring the overheads of context switches. (1 credit)

1 credit per correct explanation (assuming 2 aspects mentioned)

Nr: 6.6

U: 1/2013, Model

Q: Given the Java program fragment below:

 4 class Count extends Thread {
 5 public int inc;
 6 public Count(int inc) {
 7 this.inc = inc;
 8 }
 9
 10 static int ctr = 0;
 11
 12 public void run() {
 13 int loc;
 14 for(int i = 1; i <= 3; i++) {
 15 loc = ctr + inc;
 16 ctr = loc;
 17 System.out.println(inc + "\t" + loc);
 18 }
 19 }
 20
 21 public static void main(String [] args) {
 22 Count p = new Count(1);
 23 Count q = new Count(-1);
 24 p.start();
 25 q.start();
 26 try { p.join(); q.join(); }
 27 catch(InterruptedException e) { }
 28 assert ctr == 0;
 29 }
 30 }

(a) Give an example of the output of the program.
(b) What is wrong with the program and what do you think would have been the

intention of the programmer for the output?
(c) Please indicate which declaration(s) and statement(s) should be added to the

code to fix the problem.

C: 7 credits T: T D: 8 min L: Medium

A: (a) An example of the output of the program is (3 credits):
1 1
-1 -1
-1 -2
1 2
1 3
-1 -3

(b) The program has a race condition. The programmer had intended the counter to
be incremented 3 times and decremented three times, ending up as 0. (2 credits)

(c) The semaphore declarations and statements to be added are: (2 credits)

Before or after line 10:
 static Semaphore s = new Semaphore(1);
Before line 15:
 try { s.acquire(); }
 catch(InterruptedException e) {}
After line 16:
 s.release();

Nr: 7.3

U: 1/2013, Model

Q: (a) List the three necessary conditions that must simultaneously hold for a deadlock
to appear, in addition to mutual exclusion.

(b) For each of the three conditions indicate what the specific problems are that
each condition causes, and how the condition could be negated.

C: 4 credits T: T D: 5 min L: Moderate

A: (a) The three conditions are (1 credit)
• Hold and wait.
• No pre-emption
• Circular wait

(b) The difficulties and possible remedies are: (1 credit each)
• Hold and wait results in long delays and inefficient use of resources. One

approach is to require processes to request all resources in advance (thus
negating the wait but not the hold), which aggravates the delays and the
inefficiency, but avoids deadlock.

• No pre-emption applies to some resources, such as printers but not to
others, such as the CPU, so for pre-emptible resources there is no problem.

• Circular wait can be negated by ordering the resource types, so that all
processes must request the resources in the same order. This results in long
waits again.

Nr: 10.9

U: 1/2013, Model

Q: Consider the C program fragment below:

#define M 1024 /* max mount point file name size */
char *lookup(char *pth, char *mnt) {
 struct mntent m;
 struct stat s;
 stat(pth, &s);
 dev_t d = s.st_dev;
 ino_t i = s.st_ino;
 FILE *f = setmntent("/proc/mounts", "r");
 while (getmntent_r(f, &m, mnt, M)) {
 if (stat(m.mnt_dir, &s) != 0) {
 continue;
 }
 if (s.st_dev == d && s.st_ino == i) {
 return mnt ;
 }
 }
 endmntent(f);
 return NULL;
}

int main(int argc, char **argv) {
 char pth[M] = "/", mnt[M], *end;
 strncat(pth,argv[1],M);
 for(;;) {
 if(lookup(pth,mnt) != NULL) {
 printf("%s mounted on %s\n",pth,mnt);
 } else {
 printf("%s not mounted\n",pth);
 }
 end = strrchr(pth,'/');
 if(end == NULL || end == pth) {
 break;
 } else {
 *end = '\0';
 }
 }
 return 0;
}

(a) What is the output of the program when it is executed on the root directory?
(b) What if the argument is a directory in a file system mounted somewhere on the

root file system?

C: 7 credits T: T D: 10 min L: Medium

A: (a) // mounted on rootfs
/ mounted on rootfs (3 credit)

(b) //home mounted on /dev/someting
/ mounted on rootfs (4 credits)

Nr: 11.8

U: 1/2013, Model

Q: Consider the C program fragment below:

#define M 1024
#define N 64
#define Dir "Foo"

int main(int argc, char* argv[]) {
 int i;
 char top[M], cur[M], tmp[M];
 getcwd(top,M);
 printf("top=%s\n",top);
 strcpy(cur, ".");
 for(i=0; i<N; i++) {
 strcpy(tmp, cur);
 sprintf(cur, "%s/Foo", tmp);
 mkdir(cur, 0755);
 sprintf(tmp, "%s/Foo_%d", top, i);
 symlink(cur, tmp);
 }
 return 0;
}

(a) How many directories are created by the program? Why?
(b) How many symbolic links are created by the program? Why?
(c) How many regular files does the program create? Why?

C: 7 credits T: T D: 10 min L: Medium

A: (a) The program creates 64 directories, each at one nesting level deeper than the
previous. (3 credit)

(b) The program creates 64 symbolic links foo_i in the current directory, each pointing
at a different subdirectory, where i indicates the depth of the directory. (2 credit)

(c) The program creates no ordinary files, because it never opens a file for writing. (2
credit)

Nr: 14.7

U: 1/2013, Model

Q: Consider the C program fragment below:

int main(int argc, char* argv[]) {
 struct passwd *p;
 while ((p = getpwent()) != NULL) {
 printf("%s:%s:%d:%d:%s:%s:%s\n",
 p->pw_name,
 p->pw_passwd,
 p->pw_uid,
 p->pw_gid,
 p->pw_gecos,
 p->pw_dir,
 p->pw_shell);
 }
 endpwent();
 return 0;
}

(a) How would a sysadmin normally produce the same output as the program?
(b) If two users happen to choose the same password on a modern Linux system, will

this be visible? Why?
C: 4 credits T: T D: 5 min L: Medium

A: (a) cat /etc/passwd. (2 credits)
(b) The passwords in the password file are hashed with a salt, which ensures that even

if two passwords are the same that the hashes are different. In any case most
modern linux systems only use /etc/passwd during single-user modfe and not for
normal operation. (2 credits)

Nr: 15.5

U: 1/2013, Model

Q: In the context of access control:
(a) What is authentication
(b) What is authorization
(c) What is auditing
(d) What is the purpose of the reference monitor in relation to the three concepts

mentioned above?
C: 2 credits T: MC D: 4 min L: Easy

A: (a) Authentication is to determine who makes a request (0.5 credit)
(b) Authorization is to determine who can do what on an object (0.5 credit)
(c) Auditing is to determine post-hoc what happened and why (0.5 credit)
(d) The reference monitor binds all three determinations together as follows (0.5

credit):

