
1. (a) The outer loop is taken n times, the inner loop on average n/2 ti-
mes, with each time 2 arithmetical operations. So the asymptotic
time complexity is Θ(n2).

(b) We apply the Master Theorem with a = 8 and b = 2, so E =
log8/log2 = 3. Since f(n) ∈ Θ(n3) case 2 applies, so T (n) ∈
Θ(n3log(n)).

2. Suppose the heap is given by array E. There are three possibilities:

(a) E is still a heap; then you are ready.

(b) The new value k of E[i] is bigger than its parent. Then swap E[i]
with its parent. Repeat this until k is in a position where it is
smaller than its parent (or it is the root); now you have again a
heap/

(c) The new value k of E[i] is smaller that its parent, but also bigger
than one of its children. Now call Heapify(E,i).

3. As all keys are positive, the method can initially be called with val =
0.

def sortedInOrder(val,tree)

if tree == null:

return val,True

max,ok = sortedInOrder(val,tree.left)

if not ok or tree.key<max:

return max,False

return sortedInOrder(tree.key,tree.right)

4. (a) If ti ≥ t you choose i, the overwork is ti − t; if you do not choose
i the optimal overwork is O(i + 1, t) and you take the minimum
of these two options. If not ti ≥ t then the optimal overwork is
the minimum of O(i + 1, t − ti) (if you choose i) and O(i + 1, t)
(if you do not choose i). So (iii).

(b) The algorithm to fill the matrix (we assume that t is filled from
t[1] to t[n] so has length n+1):

1



def doctor(k,T):

if T=0: return 0

n=len(p)-1

O=[[0 for t in ran(T+1)] for i in ran(n+2)]

for t in ran(1,T+1): O[n+1][t]=infinity

for i in ran(n,0):

for t in ran(T+1):

if t[i]>=t:

O[i][t]=min(t[i]-t,O[i+1][t])

else:

O[i][t]=min(O[i+1][t-p[i]],O[i+1][t])

return O[1][T]

The complexity of this algorithm is Θ(n2).

2


