UNIVERSITEIT TWENTE.

Examination Operating Systems
28 January 2014, Sport Centrum

Read these instructions and the questions carefully! If the questions are unclear, you can ask for
clarification.

Please make sure that your name and student number appear on all answer sheets.
Your working time begins at 13:45 and ends at 17:15.

Try to give precise answers using appropriate terminology. For multiple-choice questions there
may be more than one correct answer; all of these must be selected for full marks.

Unreadable or extremely long answers will not be marked. Multiple-choice answers that are
ambiguous will not be marked either.

You are only allowed to use your writing materials during the exam.

All answers must be given in English.

Nr: | 1.3

Q: | Consider the two C-programs Uname.c and Vname.c below:

/* Uname.c */
#include <stdio.h>
#include <sys/utsname.h>

int main(int argc, char * argv(]) {
sStruct utsname u;
if (uname (&u) == 0) {
printf ("%s %s. %s %s\n",
u.nodename, u.sysname,
u.release, u.machine);

}

return 0O;

}

/* Vname.c */

#include <stdio.h>
#include <stdlib.h>
#include <sys/utsname.h>

int main(int argc, char * argv[]) {
struct utsname *v = malloc(sizeof (struct utsname)):
if (uname(v) == 0) {
pr1ntf(“° %s %s %s\n”,
v->nodename, v->sysname,
v->release, v->machine);
}

return 0O;

(a) What is the main difference between the two programs? Explain.
(b) What is the main similarity of the two programs? Explain.

C: | 7 credits

a\\\eb VESOW) 15(9(1,%@9%&@6‘\“&1: Lksaoone

sbrud 15 @20 de B e pooke ~ooc @ uksnave
6?(‘%/\03 5 Nedeor Lin, Je_ 9(’_\,.\.0@ﬁ u. Coen y
Ry de R ek e V9o :

o) bde Oinbed Mo Syenoee, cole® e achine

Nr: | 2.6
Q: | Given the following C program fragment:

extern char etext, edata, end;

int a = Oxaaaa, b;

int main(int argec, char * argv([]) {
int ¢ = Oxcccc;
int *d ptr = (int*) malloc(sizeof(int});
int *e ptr = (int*) alloca(sizeof(int));
b = 0xbbbb;
*d ptr = Oxdddd;
*e ptr = Oxeeee;
printf ("%$p:a=%0x\n", &a, a);
printf ("%$p:edatal\n\n", &edata):;
printf ("%p:b=%0x\n", &b, b);
printf ("%p:end\n\n", é&end);
PELRLE("2pid=%0K\AY, d ptr, *d ptr);
printf ("$p:brk\n\n", sbrk(0));
printf ("3p:e=%0x\n", e ptr, *e ptr);
printf {("%p:argc=%0x\n", &argc, argc);
printf ("%$p:c=%0x\n\n", &c, c);
printf("%p:main\n", &main);
printf ("%p:etext\n\n", &setext);
return 0;

}

(a) Give an example of the output of the program. Here the actual addresses are not
important (you may even choose to use 1, 2, 3 etc), but the order of the addresses
must be correct.

(b) Annotate each segment of the program’s address space with its conventional
Unix/Linux name.

(c) If you would run the program several times on a current Linux system with the
latest protection, then which addresses would change and which would remain
the same? Why?

C: | 7 credits
Q) U~

gevk .

3.9

Consider the C program fragment below:

int main(int argc, char *argv([]) ({

pid t pid=fork():

printf ("%s\n", argv[0]);

1f (pid==0) {
static char *argv[]={"echo","Foo",NULL};
execv (" /bin/echo",argv);
exit (127);

} else
waitpid(pid, 0,0);

}

fetarn -3

Assume that the compiled version of the program is executed as “. /a.ocut A B”.
(Hint: the NULL pointer at the end of the argv array indicates the end of the list of
arguments).

(a) What is the purpose of the first argument to the execv system call?

{(b) What will be the contents of the argv argument to the main function of the echo
program?

(c) What is the purpose of the call to waitpid?

7 credits

Nr:

4.8

Consider the C and Java program fragments below:

#define N 5000

void* tproc(void *arg) |
printf ("Thread %d\n", *((int *)arg)):
return NULL;

int main({int argc, char * argv[]) {
int i;
int targ([N];
pthread t tid[N];
for{(i = 0; i < N; i++) {
targ(i] = i*i;
pthread create(&(tid[i]), NULL, &tproc, &targ[il):
}
for(i = 0; 1 < N; i++) {
pthread join(tid[i], NULL) !'= 0;
1
return 0;

}

class MyThread extends Thread {
static final int N = 5000
int arg;
public MyThread(int arg) {
this.arg = argqg;

r

}
public void run() {
System.out.println("Thread " + arg);
}
public static void main(String [] args) ({
MyThread[] tid = new MyThread [N]
for(int i = 0; i < N; i++) {
tid[i] = new MyThread(i*i);
tid[i]l.start():

’

1

for(int i = N-1; 1 >= 0; i--) |
cry { Eid[i]<jgBinils
catch(InterruptedException e) { }

(a) What is the main difference between the outputs produced by the two
programs? Why?
(b) Which of the two programs is faster? Why?

7 credits

4.9

Consider the C program fragment below:

#define N 5

void* tproc(void *arg) ({
printf ("Thread %d\n", *((int *)arg)):
return NULL;

int main{int argc, char * argv[]) ¢{

int 13

int targ[N];

pthread t tid([N];

for{(i = 0; 1 < N; i++) {
targ(i] = i*i;
pthread create(&(tid(i]), NULL, &tproc, &targ[i]):

)

for(i = 0; 1 < N; 1i++) |
pthread jein{tid[i], NULILJ;

}

return 0;

(a) How many threads will be created when this program is run? Why?

(b) What is the output of the program? Why?

(c) Is the output always the same? Why?

(d) Explain why the argument of the print £ statement is not simply: * arg.

4 credits

Nr:

5.10

Assume that the C-program of which the main fragment is shown below runs on a single
core computer,

#define
#define
#define
#tdefine

= Wi v
— o W W

690

/* Burn about N * 10 ms CPU time */
void loop(int N} {
int 4, 3, k i
for(i = 0; 1 < N; i++) {
for(j = i % My j#+) |
for(k = 0; k < M; kt++) {
}

0;
k

}

int main{int argc, char *argv[]) {
for(int p = 0; p < P; p++) {
for(int g = 0; g < Q; g++) {
int child fork();
if {(child == 0} {
child getpid();
setpriority (PRIO PROCESS, child, p) ;
for(int r = 0; r < R; r++) |
loop(100);

1|~

1
exit (0) ;

}
}

return 0O;

(a) How many child processes are created by the main process? Explain.

{(b) Which of the child processes will terminate first and which will terminate last?
Explain.

(c) Would your answer always remain the same if the program would be run on an 8
core system? Explain

7 credits

6.8

A semaphore satisfies the following invariants:
S20
S =55 + #Signals - #Waits
where
Se is the initial value of §
#Signals is the number of executed Signal(S) operations
#Waits is the number of completed Wait(S) operations

Given the two concurrent processes below, prove the mutual exclusion property, using
the two semaphore invariants. Sq is initialised to 1.

while (true) { while (true) {
al: Non Critiecal Section 1; aZ2: Non Critical Section 2;
bl: Wait (S); b2: Wait (S);
cl: Critigal Section 13 cZ2: Critical Section 2;
dl: Signal (S): dZ: Signali(S);
} }
4 credits
6.12

Consider the Linux command pipeline below:
cat foo | sort | unig -c¢ | sort -rn | pr -2

Assume the file foo contains 7 lines as follows:
A

Bb

Cee

Dddd

Cee

Bb

(a) Show the intermediary results passing through each of the four pipes
(b) What is the final output of the pipeline?

7 credits

Nr:

7.6

Consider the program fragment below, representing a semaphore solution to the dining
Philosophers problem. Assume that all semaphores have been initialised correctly and
that there are three threads, one for each of the three philosophers with k=0, k=1 and
k=2.

#define N 5
#define P 3

sem_t Room; /* Initialised to 1 */
sem t Fork[P]; /* initialized to P-1 */

void *tphilosopher(void *ptr) {

int 1; k = #{{int *) ptr):

for{(i = 1; i <= N; i++) {
printf ("Tnk %d %d\n", k, 1i};
sem wait (&Room) ;
sem wait (&Fork[k]) :
sem wait(&Fork[(k+1) % P]) ;
printf ("Eat %d %d\n", k, 1i);
sem post(&Fork([k]) ;
sem post (&Fork[({k+1l) % P]) ;
sem_post (&Room) ;

}

pthread exit (0);

(a) Give an example of the output of the program.

(b) Show that it possible for two of the philosophers to conspire so that a third
philosopher will starve. Explain the scenario.

(c}) How could the starvation problem be solved?

7 credits

Nr:

9.6

Consider the C-program fragment below:

#define N 5
#define P 4096

int main(int argc, char* argv(]) {
I0E iy ki
char buffer [N*P];
struct rusage usage;
getrusage (RUSAGE SELF, &usage);
k = usage.ru minflt; /* number of page faults now */
for (1=0; i < N#*P; i++) |
buffer(i] = 0;
getrusage (RUSAGE SELF, &usage):
if{ kK 1= haage.ru minflt) {
it £ = bsage.ru minflr ;
/* A: print i and f; B: save i and f */
k = £;
}
}
/* B: print the table with all i and f */
return 0;

}

The programmer made two versions, A and B of the program. Instead of the comment
/* save ... */ version A prints the value of the variables i and f, and version B saves both
values in a small array for printing later, just before the return statement.

Output of version A:

i= a30, f=156
1= a3l, f=1s6l
i=1a30, f=162
i=2a30, f=163
1i=3a30, f=164

Output of version B:

i= 0, £=153
i= 470, f=154
i=1470, £=155
i=2470, f=156
i=3470, £=157

(a) What is the main difference between the two programs? What is the cause of
the difference?
(b) What is the main similarity of the two programs? Explain.

7 credits

Nr: [11.9
Q: [Consider the C program fragment below:
int main(int argc, char **argv) ({
int f£d[2];
pipe (fd);
printf ("top %d\n", getpid()):
pid t pid=fork();
if (pid== 0) ({
close (fd[1]):
read (£fd[0], &pid, sizecf (int));
printf("child %d\n", pid);
close (fd[0]);
} else |
close(fd[0]);
printf ("parent %d\n", pid);
pid = getpid();
write(fd[1], &pid, sizeof (int));
close(fd[1]):
waitpid(pid, 0,0);
}
return 0;
}
(a) Which process prints the pid of the child? Why?
(b) Which process prints the pid of the parent? Why?
C: |7 credits

Nr:

11.10

Consider the C-program fragment below:

int main(int argc, char * argv{]) {
DIR *dirp = opendir(argv([1l]) ;
if (dirp != NULL)} {
struct dirent *dp 3
while (dp = readdir(dirp)) {
char &£;
switch(dp->d type) {
case DT BLK
case DT CHR |
case DT DIR
case DT _FIFO
case DT LNK
case DT REG
case DT SOCK .,
case DT UNKNOWN
default

= 'b' ; break ;
'c' ; break ;

= 'd' ; break ;
= 'p' ; break ;
; break ;

= '-' ; break ;
= 's' ; break ;
= 'y' ; break ;

(U o S s A o (o N il ol 5l e
|
f—

}
printf ("%8d %c %s\n",
(int)dp->d_ino, t, dp->d name);
}
closedir(dirp):
}

return 0O;

(a) When does the while loop terminate? Explain.
(b) What type of file would be labelled with a ‘b’?
(c) What type of file would be labelled with a ‘c’?
(d) What is printed by dp->d_ino?
(e) If the output contains the two lines below, which directory has been given as the
first argument to the program?
2 d
Z2 d

7 credits

Nr:

12.7

Q: | Consider the C-program fragment below when executed on a 32-hit machine:
#define M 1024*256
ftdefine N ?7?? /* number of buffers written */
int main(int argc, char *argv[]) {
int out = openl(argv(l], O_RDWR|O_CREAT|O _TRUNC, 0666);
imk. 4, k;
int buf([M]; /* One MByte */
for (i=0;i<N;i++) {
for (k=0; kK<M; k++) {
buf[k] = i*N+k;
}
write (out,buf, sizeof (buf));
1
if(arge>=3) |
fdatasync{out) ;
posix fadvise (out, 0,0,POSIX_ FADV_DONTNEED) ;
}
close (out) ;
return 0;
}

(a) What is the purpose of the fdatasync function?

(b) What is the purpose of the posix_fadvise function?

(c) Executing the script in the left column below shows that the amount of cached
disk space at each occurrence of the free command is as indicated in the right
column. What is the most likely value for N? Explain.

Command Cached (MB)
free -m 9449

uUumnc
./a.ocut Foo - \) \O
free -m 9849 > o
cp Foo Fool (0
free -m 10249 > o
./a.out Bar 'x
free -m 10249
cp Bar Barl 800
free -m 11049

C: | 7 credits

Nr:

14.6

(a) Identity verification can be done with three modalities, i.e. something you have,
something you are, and something you know. Give two examples of each modality.

(b) What is the main advantage of an identity verification system that uses two
modalities instead of just one?

(c) And what is the main disadvantage?

3 credits

Nr:

15.8

Consider the C program fragment below:

void foo(const char *fr) |
char to[2]:;
strepyi(to; 1)
)
>
int main(int argc, char * argv([]) {
char fr([] = "abcdefghijklmnopqrstuvwxyz";
char tel[2] 3
strcpy(to, fr) ;
printf ("to=%p=%s\nfr=%p=%s\n",
(void*)to, to, (void*)fr, fr);
fflush (stdout);
fooite):
return 0;

(a) What is the output of the program? Why?
(b) For what purpose are more sophisticated versions of this type of program used?

7 credits

Nr:

LAB2014.1

Answer the following questions about VTreeFS:
(a) What are the main features of the VTreeFs library?
(b) What is an inode?
(c} What is the “inode number” used for?
(d) What happens if the VTreeFS is running out of inodes?

6 credits

