Introduction to Mathematical Analysis (201600166 - 2EC, 201600167 - 4EC)

FRIDAY 27 OCTOBER 2017, 13:45-14:45 (2EC) OR 13.45-15.45 (4EC)

201600166 - 2EC: exercises 1, 2 and 3 (total 18 + 2 points), 1 hour.

201600167 - 4EC: exercises 1, 2, 3, 4, 5 and 6 (total 36+4 points), 2 hours.

State clearly for which course you take the exam!

Motivate all your answers and computations.

The use of electronic equipment is not allowed.

Exercise 1 (6p)

Suppose P, Q, R and S are statements.

- **a.** (2p) Suppose P is false and that the statement $(R \Rightarrow S) \Leftrightarrow (P \land Q)$ is true. Find the truth values of R and S. (This can be done without a truth table.)
- b. (4p) Decide whether or not the following pairs of statements are logically equivalent:

$$(\neg P) \land (P \Rightarrow Q)$$

and

$$\neg (Q \Rightarrow P).$$

Exercise 2 (6p)

Given

$$\begin{cases} a_{n+1} &= \sqrt{6+a_n} \\ a_1 &= 1. \end{cases}$$

Prove by induction that $a_{n+1} \geq a_n$ holds for all $n \in \mathbb{N}$.

Exercise 3 (6p)

Prove or give a counterexample for the following statements:

- **a.** (2p) Suppose a, b and c are integers. If $a^2|b$ and $b^3|c$, then $a^6|c$.
- **b.** (2p) Let $n \in \mathbb{Z}$. If $6 \nmid n^2$, then $6 \nmid n$.
- c. (2p) There exist no integers a and b for which 21a 30b = 1.

Turn for more.

Exercise 4 (6p)

- **a.** (2p) State the Intermediate Value Theorem (IVT) for a function $f:[a,b]\to\mathbb{R}$.
- **b.** (4p) Given a continuous $f: \mathbb{R} \to \mathbb{R}$ for which $\lim_{x \to \infty} f(x) = \infty$ and $\lim_{x \to -\infty} f(x) = -\infty$.

Prove that there is a $c \in \mathbb{R}$ such that $f(c) = \sin(c)$.

Exercise 5 (6p)

Given is the function
$$F(x) = \int_1^x \frac{\sqrt{t^3 + 1}}{t} dt$$
.

- a. (3p) Find the Taylor polynomial of order 2 generated by F centered at x=1.
- **b.** (3p) Show that $\lim_{x\to\infty} F(x)$ does not exist.

Exercise 6 (6p)

a. (3p) Determine whether the series is converging or diverging:

$$\sum_{k=1}^{\infty} \frac{k^3}{2^k}$$

b. (3p) Find the interval of convergence of the power series:

$$\sum_{k=1}^{\infty} \frac{x^k}{k \cdot 3^k}$$