EXAMINATION

Eorm"al Mfeéhthizg"d Tools PROGRAMMING PARADIGMS g def;ﬁomogg?z
aculty o ate: une
University of Twente CONCURRENT PROGRAMMING time: 13.45-16.45

m This is an ‘open book” examination. You are allowed to have a copy of Java Concurrency
in Practice, the two additional papers on ‘Parallel Haskell’ and OpenCL which are avail-
able from Blackboard, and a copy of the (unannotated) lecture (hoorcollege) slides. You
are not allowed to take the slides of the exercises sessions with you. Furthermore, you are
not allowed to take personal notes and (answers to) previous examinations with you.

® You can earn 100 points with the following 8 questions. The final grade is computed as the
number of points, divided by 10. Students in the Programming Paradigms module need to
obtain at least a 5.0 for the test. Students that attended at least 6 out of 7 exercise sessions
obtain a 1.0 bonus.

VEEL SUCCES!

Question 1 (10 points)
In this question you are asked to determine the possible outcomes of a simple, concurrent Java program. Apart
from normal output, the following outcomes might be possible:

m compile-error: the program is not a correct Java program;
m runtime-error: an Exception will be thrown;

® no output: e.g., due to a deadlock or livelock.

You do not have to motivate your answers.
The questions after a. are variations on the original Java program; if you think that the variation does not change
the outcome of the original program, you can answer “same as a.”.

Consider the following Java-program Grow.

public class Grow {

private String s = "#";
public String getString () { return s; }
public void add (String sfix) { s = s + sfix; }

static final Grow g = new Grow();

public static void main(String[] args) {
Thread ta = new Thread() { public void run() { g.add("a"); }; };
Thread tb = new Thread() { public wvoid run() { g.add("b"); }; 1},
ta.start (); tb.start();

try { ta.join(); tb.join(); }
catch (InterruptedException e) {}

System.out.println(g.getString());



Test Concurrent Programming — 17 June 2016 2

(2 pnts.) What are the possible outcomes of program Grow?

(I pnt.) In the original program, we remove the t ry-catch-block (i.e., two lines) from the method main.
What are now the possible outcomes of the program?

(I pnt.) In the original program, we remove the try-catch-block (i.e., two lines) from the method main.
Furthermore, the calls ta.start () and tb.start () are replaced by ta.run() and tb.run (), respec-
tively. What are now the possible outcomes of the program?

. (I pnt.) In the original program, the methods run of both Threads ta and tb are defined as synchronized

methods. What are now the possible outcomes of the program?

. (I pnt.) In the original program, the method getstring is defined as a synchronized method. What are

now the possible outcomes of the program?

. (I pnt.) In the original program, the method add is defined as a synchronized method. What are now the

possible outcomes of the program?

. (I pnt.) In the original program, the method add is changed to:

public void add(String sfix) {
s = s + sfix;
notifyAll();

}

What are now the possible outcomes of the program?

. (2 pnts.) In the original program, the method add is changed to:

public synchronized void add(String sfix) {
if (s.equals("#") && sfix.equals("a"))
try { wait(); }
catch (InterruptedException e) {}
notify();
s = 8§ + sfix;

}

What are now the possible outcomes of the program?

Question 2 (10 points)

Indicate for each of the statements below whether the statement is true or false. You do not have to motivate your
answers. The total number of points for this question is 10 points. For each wrong answer, 2 points are subtracted.
For each open answer — for which you do not specify either true or false — 1 point is subtracted.

a.

b.

Dekker’s algorithm is a lock-free algorithm for mutual exclusion.

The happens-before relation is a partial order. Thus not all pairs of statements in a concurrent Java program
might be related by the happens-before relation.

. When you call the method interrupt of a Thread object, the method that is being executed in the Thread

will be interrupted and the method will throw an InterruptedException.
An object of the class Timer uses a single thread to execute its TimerTask objects.

Locks that are mostly uncontended can be found with thread dumps.

. If a class invariant involves two variables, at least two locks are needed to protect such a class invariant.

. Most implementations of Executorservice support work-stealing: threads in the thread pool attempt to

find and execute subtasks created by other active tasks.



Test Concurrent Programming — 17 June 2016 3

h.

i

)

An explicit lock (e.g., Reent rant Lock) which uses an unfair locking policy usually outperforms an explicit
lock which uses a fair locking policy.

A Condition object provides the methods await and signal. You cannot call wait or notify on Con-
dition objects.

Test code can introduce timing or synchronization artifacts that can mask bugs that might otherwise manifest
themselves.

Question 3 (10 points)

Some single producer, single consumer applications use the following approach to handle buffered data:

m Two bounded buffers inbuf and outbuf are allocated (with the same size).

m The producer continuously produces a new data element, and adds this to inbuf, until inbuf is full.

m The consumer continuously takes an element from outbuf and processes this, until outbuf is empty.

® When inbuf is full, and outbuf is empty, the two buffers are swapped.

a.

b.

(2 pnts.) Which class of Java’s synchronizer classes could be used to swap the two buffers?

(3 pnts.) What is the main advantage of using separate input and output buffers?

. (3 pnts.) If the producer and consumer work at irregular speed, they might end up being blocked for a long

time when they want to swap the buffers. A solution for this is to use a buffer pool, so that full buffers do not
have to be immediately processed. Sketch how such a buffer pool would work, and where synchronisation
is needed. Your solution should ensure that the producer and the consumer never directly synchronise with
each other.

. (2 pnts) Can a buffer pool implementation be used when there are multiple producers and/or consumers?

Question 4 (20 points)

Consider an application that implements a simple management system for a pizzza delivery company. There
are several classes used in this system: PizzaCompany, Order, PizzaBoy, PizzaBoyDatabase, Client, and
ClientDatabase. The application developers have also inserted some specifications (i.e., invariants and postcon-
ditions), with the idea that later they might be able to verify their implementation w.r.t. these specifications.

This application (both implementation and specification) contains several concurrency problems. Discuss five
different concurrency problems, and explain why they are a problem, e.g., by discussing an execution that illustrates
the problem.

Note that several implementation details have been left out, as they are irrelevant for this question. Furthermore,
several design and implementations decisions are questionable, but are also irrelevant for this question; we are only
interested in the concurrency problems.

class PizzaCompany {

private String name;

private PizzaBoyDatabase boys;

private ClientDatabase clients;

public PizzaBoyDatabase getPizzaBoysDB () { return boys; }
public ClientDatabase getClientsDB() { return clients; }

class Order {

private int id;
private String description;



Test Concurrent Programming — 17 June 2016

public Order (int id, String description) {
this.id = id;
this.description = description;

class PizzaBoy {
private String name;
private Order order;

public PizzaBoy (String name, Order order) {
this.name = name;
this.order = order;

public String getName () { return name;
public Order getOrder () { return order;

class PizzaBoyDatabase ({
private PizzaCompany company;

}
}

private List<String> free = new LinkedList<String>();
private List<PizzaBoy> occupied = new LinkedList<PizzaBoy>();

// private invariant company.getPizzaBoysDB() == this;

/#*@ private invariant
(\forall String name, Pizzaboy boy;

free.contains (name) && occupied.contains (boy); boy.getName ()

*/

public synchronized void assignOrder (Order order)

if (free.isEmpty()) {

try { wait(); }

catch (InterruptedException e) { /x*
}
String name = free.remove(0);
occupied.add(new PizzaBoy (name, order));

//@ ensures free.contains (boy.getNumber());

public synchronized void orderDelivered(PizzaBoy boy)

occupied.remove (boy) ;
free.add (boy.getName());
notify();

}

public synchronized void givelInstructionsToAllBoys ()

if (! occupied.isEmpty()) {

try { wait(); }

catch (InterruptedException e) { /*
}

// Give instructions to all pizza boys,

public void printWaitingPizzaBoys () {

System.out.println("Boys, waiting, for_an,

for (String name : free)
System.out.println (name) ;

do something useful

do something useful #*/ }

now that none of them is occupied.

order:");



45

46

47

48

49

Test Concurrent Programming — 17 June 2016

// A client can have a favorite Pizza Boy.

public synchronized void assignFavorite (PizzaBoy boy,

Client ¢ = company.getClientsDB() .getClient (client_name);

if (c != null)

c.setFavorite (boy) ;

class Client {
private String
private String
private PizzaBoy

name;
address;
favorite_boy;

private List<Order> previous_orders = new LinkedList<Order> () ;

public Client (String name, String address)

this.name
this.address

= name;
= address;

this.favorite_boy = null;

public String getName ()
public String getAddress ()

{

{ return name; }
{ return address; }

ublic synchronized void addOrder (Order order) {
P
previous_orders.add(order);

public void setFavorite(PizzaBoy boy)

class ClientDatabase {

private PizzaCompany company;

private Map<String,

Client> clients = new HashMap<String,

{ favorite_boy = boy; }

// private invariant company.getClientsDB() == this;

public synchronized void addClient (String name, String address)
if (getClient (name) == null)
clients.put (name, new Client (name,

address)) ;

public synchronized Client getClient (String name) ({
return clients.get (name);

public synchronized void placeOrder (Client client, Order order)
client.addOrder (order) ;
company.getPizzaBoysDB () .assignOrder (order) ;

Question 5 (10 points)

A CountDownLatch is a synchronization aid that allows one or more threads to wait until a set of operations being

performed in other threads completes.

String client_name)

Client> () ;

{

{

{



Test Concurrent Programming — 17 June 2016 6

A CountDownLatch is initialized with a given count. The await methods block until the current count
reaches zero due to invocations of the countDown method, after which all waiting threads are released and any
subsequent invocations of await return immediately. This is a one-shot phenomenon — the count cannot be reset.

In this question you are asked to develop a CountDownLatch class. The implementation of your CountDown~
Latch should use a ReentrantLock in combination with a Condition object. Your CountDownLatch should
implement the following interface:

interface Latch {
// Causes the current thread to wait until the latch has counted down

// to zero, unless the thread is interrupted.
public void await () throws InterruptedException;

// Decrements the count of the latch, releasing all waiting threads
// 1if the count reaches zero.
public void countDown () ;

Question 6 (15 points)
Consider the interface BasicLock interface which offers the methods 1ock and unlock of Java’s Lock interface:

public interface BasicLock {
// Acquires the lock.
public void lock();

// Releases the lock.
// Throws IllegalMonitorStateException when the lock is not held.
public void unlock () throws IllegalMonitorStateException;

}

In this question you are asked to create a class ReentrantCASLock which implements the interface BasicLock.
Your implementation should use an At omicLong variable and use the compare-and-set mechanism to ensure mu-
tual exclusion.

Your implementation of ReentrantCasLock should have the following properties:

m (7 pnts.) The class ReentrantCASLock should implement the mutual exclusion property correctly using the
compare-and-set mechanism.
m (6 pnts.) The class Reent rant CASLock should accomodate reentering: if a thread holds the lock and requests
it again with lock this should be allowed.
m (2 pnts.) The method unlock should throw an IllegalMonitorStateException when a thread which
calls unlock does not have the lock.
Solutions that do not use the compare-and-set mechanism to ensure mutual exclusion will not rewarded with any
points.

The following methods of the class Thread might be useful when implementing Reent rantCAsLock:

class java.lang.Thread {
// Returns a reference to the currently executing thread object.

public static Thread currentThread() { ... }

// Returns the identifier of this Thread: a positive number.
public long getId() { ... }



Test Concurrent Programming — 17 June 2016 7

Question 7 (10 points)
a. (3 pnts.) Explain whether it is possible to have r1==r2==1 at the end of an execution. Motivate your answer.

initially; x==y==0, rl==r2==
rl = x%; r2 = y;
y = £l X = r2;

b. (3 pnts.) What are the possible values of r1 at the end of the execution? Motivate your answer.

initially: answer==2, ready==false, x==

rl = x; answer = 3;
if (ready) then ready = true;
rl = answer;

c. (2 pnts.) What changes if the variable answer is defined volatile? Motivate your answer.

d. (2 pnts.) What changes if the variable ready is defined volatile? Motivate your answer.

Question 8 (15 points)

a. (2 pnts.) Consider the following algebraic data type, which models a binary tree:
data Tree a = Leaf a | Node a (Tree a) (Tree a)
Implement a recursive function pt reesuml :: Tree Int —> Int thatsums up all elements in the tree by
using semi-explicit parallelism. A sequential version is given below.

treesum :: Tree Int -> Int
treesum (Leaf v) = v
treesum (Node v 1 r) = v + (treesum 1) + (treesum r)

Explain in detail how your implementation achieves parallelism.

b. (7 pnts.) Implement a second variant: ptreesum2 :: Tree Int -> I0 Int that uses fork/join paral-
lelism, where a new thread is forked for every recursive call.

c. (6 pnts.) Consider the OpenCL kernel given below, which performs some operations on an integer array
arr, depending on whether index is even or odd:
i __kernel void incorrect (__global int* arr, int size) {

int index = get_global_id(0);

2
3
4

if (index % 2 == 0) {
5 arr [index] *= 2;
6 barrier (CLK_GLOBAL_MEM FENCE) ;
7 arr[index] += arr[index - 4 % size];
8 }
9 else {
10 arr[index] += arr[index + (size / 2) % size];
11 barrier (CLK_GLOBAL_MEM_ FENCE) ;
12 arr[index] =*= 3;
13 }
14
15 barrier (CLK_GLOBAL_MEM_FENCE) ;

16}

This kernel contains bugs: a parallel execution may not give the same result as a sequential execution of this
kernel. Identify and explain all bugs in this kernel. Also write a bug-free version of this kernel.

[PP CP 2015/2016 — 16 June 2016]



