Test of Pearl 000 - Binary logic and computer architecture
Pearls of Computer Science (201700139)
Bachelor module 1.1, Technical Computer Science, EWI
September 8, 2017, 13:45-14:45
Module coordinator: Doina Bucur, Maurice van Keulen
Instructor: Pieter-Tjerk de Boer

- You may use 1 A4 document with your own notes for this exam and a simple calculator.
- Scientific or graphical calculators, laptops, mobile phones, books etc. are not allowed.

Put those in your bag now!

- Write your answers on this paper, in the provided boxes, and hand this in.
- Total number of points: 100.

Total number of pages: 7.

Your name:
(please underline your family name (i.e., the name on your student card), so that we know how to sort)
\square
Your student number:

Continued on next page...

1. Binary numbers

(a) Convert the decimal number -4 to a 6-bit 2-complement binary number. Show your calculation.

(b) Convert the hexadecimal A2F to decimal, and show your calculation.
\square
(c) Which of the following operations multiplies a binary number by 9? (one correct answer)
A. Shift to the left by 9 positions.
B. Shift to the right by 9 positions.
C. Shift to the left by 3 positions and add the original (unshifted) number to it.
D. Shift to the right by 3 positions and add the original (unshifted) number to it.
E. Shift to the left by 9 positions and add the original (unshifted) number to it.
F. Shift to the right by 9 positions and add the original (unshifted) number to it.

(d) Which of the following operations multiplies a 2-complement binary number by -1? One or more are correct; select all correct ones!
A. Invert the first bit.
B. Invert the last bit.
C. Invert all bits.
D. Invert all bits, and then add 1.
E. Invert all bits, and then subtract 1.
F. Add 1, and then invert all bits.
G. Subtract 1, and then invert all bits.

2. Boolean logic

(a) Give the truth table of a 3-input AND/OR-gate: if input $\mathrm{C}=1$, the output is the OR of inputs A and B, otherwise, it is the AND of A and B.

(b) Suppose you take a 2-input AND gate, and put inverters in front of both inputs. Does this as a whole work as a 2-input OR gate?
A. No, you can never make an OR gate out of AND gate.
B. No; but if we also put an inverter at the output, it does.
C. Yes, and this would also work if the AND gate had more than 2 inputs.
D. Yes, but this only works for a 2-input AND gate, not for more inputs.

Explain your answer:
(c) Consider the following derivation in Boolean algebra. Indicate for each (numbered) equals sign which rule is applied, by putting a tickmark (\checkmark) in the appropriate cells of the table. The "wrong" rule is to be chosen if you think that that step is not correct. (It is possible that a rule is used multiple times, or not at all, in this derivation; however, each step uses only a single rule.)
$(A+\bar{B}+C) \overline{(\bar{A}+\bar{B})} \stackrel{(1)}{=}(A+\bar{B}+C)(A+B) \stackrel{(2)}{=} A+(\bar{B}+C) \cdot B \stackrel{(3)}{=} A+\bar{B} B+C B \stackrel{(4)}{=} A+\bar{B} B+B C \stackrel{(5)}{=}$ $A+0+B C \stackrel{(6)}{=} A+B C$

step	commutative	identity	complement	distributive	DeMorgan	wrong
(1)						
(2)						
(3)						
(4)						
(5)						
(6)						

(d) Sketch a diagram implementing the following formula with only NAND gates: $A \cdot(\bar{B}+\bar{C})$

Continued on next page...

3. Problem 3

The ALU of the processor above has two instructions: $0=$ 'ADD' and $1=$ 'MUL'. Furthermore it has 48 -bit registers. The starting value for register R4 equals 0 . Give for this processor the program for computing R1 + (R2 * R3) + R1 and storing the result into R1. (You may not need all timeslots.)

	read address 1 / write address	read address 2	instruction
Timeslot 0			
Timeslot 1			
Timeslot 2			
Timeslot 3			
Timeslot 4			
Timeslot 5			

4. Problem 4

Given this AVR program; "BRNE" means "BRanch if Not Equal", "INC" means "Increment (add 1)", "SUB" means "Subtract".
Assume that each instruction takes 1 clock cycle, except jumping to a different address, which takes 2 clock cycles.
(a) Fill in the below table with the status of the registers after each instruction; if a register doesn't change from one line to the next, you may leave it blank.

R17	$\mathbf{R 1 8}$	$\mathbf{R 1 9}$	$\mathbf{R 2 0}$	$\mathbf{R 2 1}$

LDI R17, \$03
LDI R18, \$02
LDI R19, \$01
LDI R20, \$00
ADD R18, R17
SUB R18, R19
INC R19
MOV R21, R19
SUB R21, R17
BRNE -6
(b) How many clockcycles does the program (of the previous page) take? Explain.
\square

5. Problem 5

What is the mathematical function that is computed by the code below?
Write as a function of X and Y, e.g. $f(X, Y)=X+Y$, and explain.
Assume that X and Y are larger than 0 , and the result is available in R20.

```
    LDI R17, $X
    LDI R18, $Y
    LDI R19, $01
label1:
    SUB R18, R19
    BREQ label2
    ADD R17, R17
    JMP label1
label2:
    MOV R20, R17
```

