Kenmerk: EWI2018/TW/DMMP/MU/003

Test Exam 2, Module 7 Discrete Structures \& Efficient Algorithms

All answers need to be motivated. No calculators. You are allowed to use a handwritten cheat sheet (A4, both sides) per topic (L\&M, ALG, DM).
This exam consists of three parts, with the following (estimated) times per part:

Languages \& Machines (L\&M)	1h	(30 points)
Algebra (ALG)	1 h 40 min	$(50$ points)
Discrete Mathematics	20 min	$(10$ points)

Total of $30+50+10=90$ points. Your exam grade is the maximum of 1 and the total number of points divided by 9 , rounded to one digit.
Please use a new sheet of paper for each part (ADS/DW/L\&M)!

Languages \& Machines

1. Transform the following contextfree grammar G step by step into Chomsky Normal Form. Clearly indicate the steps you take, including the intermediary results.

$$
G=\left\{\begin{array}{l}
S \rightarrow A B \mid B C S \\
A \rightarrow a A \mid C \\
B \rightarrow b B \mid \lambda \\
C \rightarrow c C \mid \lambda
\end{array}\right.
$$

2. Consider the contextfree language $L=\left\{a^{i} b^{*} c^{j} \mid j \geq i \geq 0\right\}$.

Provide a deterministic PDA (pushdown automaton) for this language.
3. A 2-tape Turing Machine (TM) has two tapes. At the start, the input word is on tape 1 and tape 2 is empty. So, for word aabcbaa the start configuration is

$$
\left[q_{0} ; * B a a b c b a a B ; * B B B B B\right]
$$

where B denotes the blank symbol, and $*$ denotes the position of the head on the tapes.
(a) Provide a 2-tape Turing Machine (TM) that recognizes the language $\left\{w c w^{R} \mid w \in\right.$ $\left.\{a, b\}^{*}\right\}$.
(b) Explain shortly the working of your machine, inluding a computation from the start configuration for the word aabcbaa.
(c) Does your TM also decide this language? (explain)
(d) Is your TM deterministic? (explain)

Algebra

4. Let $V=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$, the Klein four-group. As we know, every finite group is isomorphic to a subgroup of S_{n}, the permutation group of n symbols.
(a) Why can V not be isomorphic to a subgroup of S_{3} ?
(b) Determine a subgroup H of S_{4} such that V isomorphic to H.
5. Let (G, \cdot) be a group. Define

$$
\mathrm{Z}(G)=\{h \in G \mid \forall g \in G: \quad g \cdot h=h \cdot g\} .
$$

(a) Show that $Z(G)$ is a subgroup of G.
(b) Now, let G be the group of matrices equiped with matrix multiplication

$$
G=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \right\rvert\, a, b, c, d \in \mathbb{R} \quad a d-b c \neq 0\right\} .
$$

Determine $\mathrm{Z}(G)$.
(c) Show that $\mathrm{Z}(G)$ from Part 5 b is isomorphic to $\mathbb{R} \backslash\{0\}$ with the usual multiplication.
6. Let $p(x) \in \mathbb{Z}_{5}[x]$ be given by: $p(x)=x^{3}+2 x^{2}+1$ and $I=<p(x)>$ the ideal in $\mathbb{Z}_{5}[x]$ generated by $p(x)$.
(a) Demonstrate that $p(x)$ is irreducible.
(b) Argue that $\mathbb{F}=\mathbb{Z}_{5}[x] / I$ is a field.
(c) Decribe the general form of the elements of $\mathbb{F}=\mathbb{Z}_{5}[x] / I$. How many different elements are there in \mathbb{F} ?
(d) Calculate the inverse of $2 x+3+I$ in \mathbb{F}.
(e) Show that \mathbb{F} is isomorphic to $\mathbb{Z}_{5}[x] /<x^{3}+3 x+2>$.
7. Use Burnside's theorem to calculate the number of different ways in which the edges of a square made of iron wire can be painted using five colors.
8. Write the permutation $\alpha \in S_{5}$ as product of disjoint cycles and a product of 2-cycle respectively.

$$
\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 3 & 4 & 2 & 1
\end{array}\right]
$$

Points: 1a: 3, b: 5; 2a: 5, b: 5, c: 5; 3a: 3, b: 4, c: 4, d: 6, e: 4; 4: 3; 5: 3.

Discrete Mathematics

9. $(3$ points $)$ Compute $3^{20}(\bmod 5)$.
10. (7 points) The RSA method has been used with as modulus $n=55$ and with exponent $e=7$ to encode the secret message M to $C=M^{e}=2$. Compute M.
