201700080 Information Theory and Statistics 19 April 2022, 13:45-16:45

This test consists of 5 problems for a total of 36 points. All answers need to be justified. The use of a non-programmable calculator (not a "GR") is allowed. A handwritten single side A4 cheat sheet is allowed. No additional books or notes may be used.

1. The centered Laplace distribution is a continuous distribution with pdf

$$f_b(x) = \frac{1}{2b} \exp\left(-\frac{|x|}{b}\right),$$

where b > 0 is a scale parameter and $x \in \mathbb{R}$.

You receive a sample of n observations x_1, x_2, \ldots, x_n , that are independent and identically distributed according to a Laplace distribution for which the scale b is unknown. It is known that either $b = b_1$ or $b = b_2$, with $b_1 > b_2$.

In this exercise you are going to work on the binary hypothesis testing problem for choosing between b_1 and b_2 . Therefore, let P_1 and P_2 be the continuous probability distributions with densities f_{b_1} and f_{b_2} , respectively.

- a. [4 pt] Specify a binary hypothesis testing problem for choosing between b_1 and b_2 . Derive an optimal decision rule.
- b. [2 pt] Compute $D(P_1 \parallel P_2)$. (Hint: If $X \sim \text{Laplace}(b)$ then $|X| \sim \text{Exp}(b^{-1})$.)
- c. [2 pt] State the Chernoff-Stein result. Make sure to define and explain the variables and quantities that are involved.
- 2. Let X_1 and X_2 be identically distributed discrete random variables. They are not necessarily independent. Let

$$\rho = \frac{I(X_1; X_2)}{H(X_1)}.$$

- a. [2 pt] Show that $\rho = 1 \frac{H(X_2|X_1)}{H(X_1)}$. (Hint: You need to use the fact that X_1 and X_2 are identically distributed.)
- b. [2 pt] Show that $0 \le \rho \le 1$.
- c. [2 pt] When is $\rho = 0$? In addition to giving a mathematical expression, explain in words as simple as possible.
- d. [2 pt] When is $\rho = 1$? In addition to giving a mathematical expression, explain in words as simple as possible.

P.T.O. (Please turn over)

- 3. Consider data compression of a source with alphabet $\mathcal{X} = \{a, b, c, d\}$ and p(a) = 0.4 and p(b) = p(c) = p(d) = 0.2.
 - a. [3 pt] Explain the property 'instantaneous decodability' and why it is important.
 - b. [3 pt] Use a Lempel-Ziv algorithm to encode the sequence

You may:

- 1. use a dictionary-based Lempel-Ziv algorithm (as in the book of Mackay) and give the encoded representation as a list of pairs (i, x), with i an integer and $x \in \mathcal{X}$, or
- 2. use a sliding-window Lempel-Ziv algorithm (as shown in, for instance, the lecture slides) and give the encoded representation as a list of triple (i, k, x), with i and k integers and $x \in \mathcal{X}$.
- 4. Consider the channel with $\mathcal{X} = \mathcal{Y} = \{0,1\}$ and P(Y = 0|X = 0) = 1 and $P(Y = 0|X = 1) = \frac{1}{2}$. In this exercise, use the natural logarithm in all expressions.
 - a. [3 pt] Let P(X = 1) = p. Give expressions for H(Y) and H(Y | X).
 - b. [3 pt] Compute the capacity of the the channel. Give a numerical answer with two decimals precision. (Hint: the derivative of $-\frac{1}{2}x\log(\frac{1}{2}x) (1-\frac{1}{2}x)\log(1-\frac{1}{2}x)$ is equal to $\frac{1}{2}\log(\frac{2-x}{x})$)
- 5. Let X be an exponentially distributed random variable with rate parameter $\theta > 0$, i.e. $f_{\theta}(x) = \theta e^{-\theta x}$, $x \geq 0$. Consider the estimator $\hat{\theta}_n = \frac{n}{\sum_{j=1}^n x_j}$, for estimating θ based on observations x_1, \ldots, x_n . It is known (and you can use these facts in your solutions) that this estimator is unbiased and efficient.
 - a. [2 pt] Compute $\mathbb{E}[\hat{\theta}_n]$.
 - b. [3 pt] Compute the Fisher information $J(\theta)$.
 - c. [3 pt] Compute $var(\hat{\theta}_n)$. State theoretical results that you are using and explain.