201300180 Data \& Information - Test 2, 20.05.2016 - Solutions

Question 1

For a minimal number of tables, the covering generalization is represented by tables only for the subclasses; the two classes with a $1-1$ association are represented by a single table. Depending on what you choose as key for the combined table, there are two slightly different versions.

Version 1

```
Person(p_id, surname, first_name, telephone_no,
    PK(p_id));
Company(name, address, contact_person NOT NULL, email,
    PK(name),
    FK contact_person REF Person(p_id),
    UNIQUE(contact_person));
Company_customer(p_id, address, company_name,
    PK(p_id),
    FK(p_id) REF Person,
    FK(company_name) REF Company(name)
Private_customer(p_id, address, credit_card_no,
        PK(p_id),
        FK(p_id) REF Person);
```

Version 2

```
Person(p_id, surname, first_name, telephone_no,
        PK(p_id));
Company_contact(p_id, email, company_name NOT NULL, address,
    PK(p_id),
    FK(p_id) REF Person,
    UNIQUE(company_name));
Company_customer(p_id, address, contact_id
    PK(p_id),
    FK(p_id) REF Person,
    FK(contact_id) REF Company_contact(p_id));
Private_customer(p_id, address, credit_card_no,
    PK(p_id),
    FK(p_id) REF Person);
```


Question 2

Remarks:

- Note the difference between Room and Room Type. The term Room Type is not mentioned in the text, but from the description it is clear that a booking is for a room type, and a specific room is allocated allocated when the visitor arrives.
- Employee has all attributes of Person, plus another one. That makes it most suited to model it as a subclass.
- Accompanying person is yet another type of person. It can be modelled with a subclass with no attributes and an association with booking, but a subclass is not really needed as the superclass Person describes everything we need to know from an accompanying person (and the generalization is not covering). The accompanying person is modelled by means of a role in the assocation.
- The assocation for_customer, associating Service with Booking is a proper composition. It is not intended record all services, the only reason to record is that it needs to be paid at check-out, making it dependent on Booking.

Question 3a

i) $A D \rightarrow B \quad$ No. There could be different bookings for the same dates (c states the reverse, i.e., $B \rightarrow A D$)
ii) $S \rightarrow A D \quad$ Yes. From e. and c. With the contextual knowledge of the case description it is obvious that „stay" refers to „booking", hence $S \rightarrow B$ (e). With $B \rightarrow A D$ (c), we find $S \rightarrow A D$.
iii) $C \rightarrow I \quad$ No. C and I are not in any way related.
iv) $I \rightarrow F \quad$ Yes, from g.
v) $\quad I \rightarrow F \quad$ Yes. Two arguments are possible:
(1) $I \rightarrow F$ implies $I \rightarrow F$, therefore the MVD can be deduced from iv) or g.
(2) F is in not any way related to any of $A B C D R S T$.
vi) $R \rightarrow$ IF Yes. IF is not in any way related to $A B C D S T$.
vii) $E \rightarrow C \quad$ No. The same employee can deliver services to different customers.
viii) $C E \rightarrow R \quad$ No. If a customer stays more than once, the bookings can be for different rooms. Likewise, although $S \rightarrow B$ is correct, $E \rightarrow S$ does not hold.
ix) $\quad C S \rightarrow R \quad$ Yes. From $S \rightarrow B$ (see (ii)) and $B \rightarrow R$ (b) we find $S \rightarrow R$, and then also CS $\rightarrow R$.
x) $\quad B \rightarrow E \quad$ No. We do have $S \rightarrow E$, but there can be different services for a booking.

Question 3b

1) In order to find out which FDs violate the BCNF condition, we first have to establish the candidate keys. Schema R has one candidate key: $S T$.
(You can find this by starting with $A B C D R S T$ as a trivial superkey, and discard attributes that are fuctionally dependent. $A C D R$ are dependent on B and can be left out. From the resulting $B S T$, we can eliminate B because of $S \rightarrow B$, yielding $S T$ as candidate key.)

All FDs in \mathscr{f} violate the BCNF condition, because all of them have a left-hand side that is not a superkey.
2) First, determine $\mathscr{\mathscr { f }}^{\mathscr{F}^{+}}=\{B \rightarrow A C D R, S \rightarrow A B C D R, T \rightarrow C\}$

For the remainder of 2) and 3) the solution differs depending on which - arbitrarily chosen - FD you start with.
(i) Start with (arbitrarily chosen) functional dependency $S \rightarrow A B C D R$.
$(S)^{+}=A B C D R S$. Splitting over S we get

- $R_{1}(S, A, B, C, D, R)$, with $\mathscr{f}_{1}=\{B \rightarrow A C D R, S \rightarrow A B C D R\}$
- $R_{2}(S, T), \quad$ with $\mathscr{F}_{2}=\{ \}$

Clearly, R_{2} is in BCNF, candidate key is $S T$.
For R_{1} we find candidate key S (all other attributes depend on S).
R_{1} is not in BCNF, however, as $B \rightarrow A C D R$ violates the condition.
So we split R_{1} on $B \rightarrow A C D R$ and determine $(B)^{+}=B A C D R$.
This yields

- $R_{11}(A, B, C, D, R)$, with $\mathscr{J}_{11}=\{B \rightarrow A C D R\}$
- $R_{12}(B, S), \quad$ with $\mathscr{f}_{12}=\{S \rightarrow B\}$
R_{11} has candidate key B and is in BCNF,
R_{12} has candidate key S and is in BCNF.
From the original functional dependencies, $T \rightarrow C$ was lost in the decomposition in step 1.
The other FDs still exist in $\mathscr{f}_{11} \cup \mathscr{f}_{12} \cup \mathscr{f}_{2}$.
(ii) Start with (arbitrarily chosen) functional dependency $B \rightarrow A C D R$.
$(B)^{+}=A B C D R$. Splitting over B we get
- $R_{1}(A, B, C, D, R)$, with $\mathscr{\mathscr { F }}_{1}=\{B \rightarrow A C D R\}$
- $R_{2}(B, S, T), \quad$ with $\mathscr{F}_{2}=\{S \rightarrow B\}$

Clearly, R_{1} is in BCNF, candidate key is B.
For R_{2} we find candidate key $S T$.
R_{2} is not in BCNF, however, as $S \rightarrow B$ violates the condition.
So we split R_{2} on $S \rightarrow B$ and determine $(S)^{+}=S B$.
This yields

- $R_{21}(S, B), \quad$ with $\mathscr{f}_{21}=\{S \rightarrow B\}$
- $R_{22}(S, T), \quad$ with $\mathscr{I}_{12}=\{ \}$
R_{21} has candidate key S and is in BCNF,
R_{22} has candidate key $S T$ and is in BCNF.
From the original functional dependencies, $T \rightarrow C$ was lost in the decomposition in step 1. The other FDs still exist in $\mathscr{F}_{1} \cup \mathscr{f}_{21} \cup \mathscr{f}_{22}$.
(iii) Start with (arbitrarily chosen) functional dependency $T \rightarrow C$.
$(T)^{+}=T C$. Splitting over T we get
- $R_{1}(T, C)$ with $\mathscr{F}_{1}=\{T \rightarrow C\}$
- $R_{2}(A, B, D, R, S, T)$, with $\mathscr{F}_{2}=\{B \rightarrow A D R, S \rightarrow A B D R\}$

Clearly, R_{1} is in BCNF, candidate key is T.
For R_{2} we find candidate key $S T$.
R_{2} is not in BCNF, both FDs violate the condition.
So we split R_{2} on (arbitrarily chosen) $B \rightarrow A D R$ and determine $(B)^{+}=A B D R$.
This yields

- $R_{21}(A, B, D, R)$, with $\mathscr{f}_{21}=\{A \rightarrow B D R\}$
- $R_{22}(B, S, T), \quad$ with $\mathscr{F}_{12}=\{S \rightarrow B\}$
R_{21} has candidate key B and is in BCNF,
R_{22} has candidate key $S T$ and is not in BCNF, as the FD violates the condition.
So we split R_{22} on $S \rightarrow B$ and determine $(S)^{+}=S B$.
This yields
- $R_{221}(B, S), \quad$ with $\mathscr{f}_{21}=\{S \rightarrow B\}$
- $R_{222}(S, T), \quad$ with $\mathscr{F}_{12}=\{ \}$
R_{221} has candidate key S and is in BCNF,
R_{22} has candidate key $S T$ and is in BCNF.
From the original functional dependencies, $B \rightarrow C$ was lost in the decomposition in step 1. The other FDs still exist in $\mathscr{f}_{1} \cup \mathscr{\mathscr { f }}_{21} \cup \mathscr{f}_{221} \cup \mathscr{\mathscr { F }}_{222}$.

Note that in iii), the second and third step can be reversed, giving the same result.

