Linear Algebra Date : April 01,2022
Time : $13.45-15.45 \mathrm{hrs}$

1. a) Determine A^{0}, A^{2}, and A^{T}

$$
\begin{aligned}
A^{0} & =I \\
A^{2} & =\left(\begin{array}{ll}
4 & 8 \\
0 & 4
\end{array}\right) \\
A^{T} & =\left(\begin{array}{ll}
2 & 0 \\
2 & 2
\end{array}\right)
\end{aligned}
$$

b) Find all the eigenvalues of $A^{-1}+A$

$$
\lambda=5 / 2
$$

2. $\left(5 v_{3}=v_{2}+2 v_{1}\right)$

The dimension of NullA is 2
3. a) A has an eigenvalue 1 for values of $\alpha: \frac{-3}{2}, \frac{3}{2}$
b) If $\alpha=0$, then the eigenspace of A corresponding to value 4 is:

$$
E_{4}=\operatorname{Span}\left\{\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\}
$$

4. Match the transformations with either of the matrices from A to G :

Transformations \rightarrow	T_{1}	T_{2}	T_{3}	T_{4}	T_{5}
	C	F	D	B	G

5. Bring the system to the echelon form:

$$
\left(\begin{array}{cccc}
\alpha & \alpha^{2} & 2 & \alpha^{2} \\
1 & \alpha-1 & \alpha & 0 \\
1 & -1 & 2 \alpha & \alpha
\end{array}\right) \sim \ldots \sim\left(\begin{array}{cccc}
1 & \alpha-1 & \alpha & 0 \\
0 & \alpha & -\alpha & -\alpha \\
0 & 0 & (\alpha-2)(\alpha+1) & -\alpha(\alpha+1)
\end{array}\right)
$$

The intersection in a line corresponds to one free variable,
(i) x_{2} is a free variable only if

- $\alpha=0,(\alpha-2)(\alpha+1) \neq 0$
- $\alpha=0, \alpha \neq 2, \alpha \neq-1$
(ii) x_{3} is a free variable only if
- $\alpha \neq 0,(\alpha-2)(\alpha+1)=0,-\alpha(\alpha+1)=0$
- $\alpha \neq 0, \alpha \neq 2, \alpha=-1$ (note that $\alpha=2$ gives an inconsistent system).

6. a) No, S_{a} is not a subspace of V. Take, for instance, the zero vector $(0,0)$. Since $2(0)-3(0) \neq 6$
$\mathbf{0} \notin S_{a}$, hence S_{a} is not a subspace of V.
b) Yes, S_{b} is a subspace of V.

To prove this,
i) take $\mathbf{0}$, because $\mathrm{A} . \boldsymbol{0}=3.0$, we have $\mathbf{0} \in \mathrm{S}_{b}$.

It is also sufficient to show that S_{b} is a non empty set.
ii) Suppose $\mathbf{x}_{1} \in \mathbf{S}_{b}$ and $\mathbf{x}_{2} \in \mathbf{S}_{b}$.

This means that

$$
A \mathbf{x}_{1}=3 \mathbf{x}_{1}, A \mathbf{x}_{2}=3 \mathbf{x}_{2}
$$

Hence

$$
A\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)=A\left(\mathbf{x}_{1}\right)+A\left(\mathbf{x}_{2}\right)=3 \mathbf{x}_{1}+3 \mathbf{x}_{2}=3\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)
$$

meaning that $\mathbf{x}_{1}+\mathbf{x}_{2} \in S_{b}$ as well.
iii) Moreover, for any $c \in \mathbb{R}, A\left(c \mathbf{x}_{1}\right)=c\left(A \mathbf{x}_{1}\right)=c\left(3 \mathbf{x}_{1}\right)=3\left(c \mathbf{x}_{1}\right)$ meaning that $c \mathbf{x}_{1} \in$ S_{b}.
We have shown above that S_{b} is non-empty set which is closed under addition and closed under scalar multiplication. Hence S_{b} is a subset of $V=\mathbb{R}^{n}$.
7. We know that \mathbf{u} and \mathbf{v} form a basis for \mathcal{U}
and reducing the augmented matrix: ($\mathbf{u} \mathbf{v} \mid \mathbf{w}$)
$\mathbf{w}=7 \mathbf{u}-4 \mathbf{v}$, that is \mathbf{w} is a linear combination of \mathbf{u} and \mathbf{v}.
Hence \mathbf{w} is in \mathcal{U}
Therefore $[\boldsymbol{w}]_{B}=\binom{7}{-4}$
8. We have $P=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)$ and $D=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2\end{array}\right)$

The matrix A is related to $P^{-1} A P$ as follows: $A=P D P^{-1}$.
Obtain $P^{-1}=\left(\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & 1\end{array}\right)$
$A=P D P^{-1}=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2\end{array}\right)\left(\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & 1\end{array}\right)=\left(\begin{array}{ccc}-1 & -1 & 3 \\ 0 & 1 & 0 \\ 0 & -1 & 2\end{array}\right)$

Alternatively:

$\mathrm{A}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=(-1)\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{c}-1 \\ 0 \\ 0\end{array}\right)$
$\mathrm{A}\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)=\mathrm{A}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)-\mathrm{A}\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)-\left(\begin{array}{l}2 \\ 0 \\ 2\end{array}\right)=\left(\begin{array}{c}-1 \\ 1 \\ -1\end{array}\right)$
$\mathrm{A}\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)=\mathrm{A}\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)-\mathrm{A}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{l}2 \\ 0 \\ 2\end{array}\right)-\left(\begin{array}{c}-1 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{l}3 \\ 0 \\ 2\end{array}\right)$
Hence we obtain $\mathrm{A}=\left(\begin{array}{ccc}-1 & -1 & 3 \\ 0 & 1 & 0 \\ 0 & -1 & 2\end{array}\right)$
9. a) We can show that

$$
\begin{aligned}
& T\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\frac{-1}{2}\left(T\left(\begin{array}{c}
0 \\
-3 \\
0
\end{array}\right)+T\left(\begin{array}{c}
-2 \\
3 \\
0
\end{array}\right)\right)=\frac{-1}{2}\left(\binom{4}{2}+\binom{2}{0}\right)=\binom{-3}{-1} \\
& T\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\frac{-1}{3} T\left(\begin{array}{c}
0 \\
-3 \\
0
\end{array}\right)=\frac{-1}{3}\binom{4}{2}=\binom{-4 / 3}{-2 / 3} \\
& T\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\frac{5}{6} T\left(\begin{array}{c}
0 \\
-3 \\
0
\end{array}\right)+\frac{1}{6} T\left(\begin{array}{c}
-2 \\
3 \\
0
\end{array}\right)+\frac{1}{3} T\left(\begin{array}{l}
1 \\
6 \\
3
\end{array}\right)=\frac{5}{6}\binom{4}{2}+\frac{1}{6}\binom{2}{0}+\frac{1}{3} T\binom{0}{1}=\binom{11 / 3}{2}
\end{aligned}
$$

Hence we have the representation matrix:
$A=T\left(\boldsymbol{e}_{1} \boldsymbol{e}_{2} \boldsymbol{e}_{3}\right)=\left(\begin{array}{ccc}-3 & -4 / 3 & 11 / 3 \\ -1 & -2 / 3 & 2\end{array}\right)$
b) The reduced echelon form of A is $\left(\begin{array}{ccc}-3 & -4 / 3 & 11 / 3 \\ -1 & -2 / 3 & 2\end{array}\right) \sim \ldots \sim\left(\begin{array}{ccc}-1 & 0 & 1 / 3 \\ 0 & 1 & -7 / 2\end{array}\right)$

We have Null $A \neq\{\mathbf{0}\}$ hence T is NOT one-to-one.
$\operatorname{Col}(A)=$

$$
i m T=\operatorname{Span}\left\{\binom{1}{0},\binom{0}{1}\right\}
$$

OR

$$
i m T=\operatorname{Span}\left\{\binom{-3}{-1},\binom{-4 / 3}{-2 / 3}\right\}
$$

$\operatorname{im} T=\mathbb{R}^{2}$ hence T is onto.

