
Managing Big Data – Exam, Feb 1, 2022 

 

Q1. 

This talks about "one big file".  

[5%] Check disk space. Total disk space is: N*D. You must add the replication factor (call it R, 

whatever value it may have); you should know you need it. Max file possible as far as disk allows: 

N*D/R. 

[5%] Check master memory (only the master stores metadata!). M/T chunk metadata items possible 

to store there. This means max file possible as far as memory allows: C*M/T. 

[1%] Altogether: whichever of the above is smaller, so min(ND/R, CM/T). 

 

Q2. 

a) Quite some options: spark-submit without arguments, or with --master local. Even pyspark if you 

paste the program in. Executes where you're logged in. Input data from disk (assuming HDFS, the 

default for big data) is distributed, comes from anywhere on cluster. Output is "to disk", the question 

says (so save(), not collect()), so again goes anywhere on cluster (where, decided by the HDFS master, 

not by the Spark driver), and replicated! 

b) Variants of a), definitely with --master yarn, so different arguments to spark-submit (Lecture 4). 

Executes distributedly, depending on how many executors were configured. Data always distributed, 

data locality is maximised. 

c) Not many, but a subset of: stdout can be used as log, may run quicker because no network is used 

(...after the data is brought in though!) since shuffles are local. It's easier to debug and include 

external libs. 

d) Can crunch big data, fast! 

 

Q3. 

a) Spark avoids disk I/O for intermediate results: caches them in memory if possible. MR would have 

to save to/load these results from disk buffers after each Map task, and from DFS (disk) files after 

each MR iteration! 

b) Spark SQL adds a query (code) optimizer, which benefits from DataFrames having a known 

schema. I expect some words on Catalyst. Spark core is blind to the internal structure of the data, so 

cannot use it for code optimisation (it does optimise, but less, by its lazy execution). Note that Spark 

SQL on the other hand loses some time in doing schema inference for the .csv, as you probably saw 

in the project (unless you reformatted to .parquet). 

c) Explain that actions trigger executions. Only 1 and 3. Nothing to do with repartitioning 

(repartition() is a transformation, so lazy) or wide dependencies (those are still transformations). 

 



Q4. 

 

a) GFS, Bigtable. Also Kafka can store, but only for a limited (configurable) time. 

b) GFS: record append (a special type of append) to the last chunk of the file, and random writes at a 

given offset in the file. 

Bigtable: write inside a single row (single-row mutation), by row key. It can also iterate (scan) over 

rows, after it located a start row by row key (this may be used more often for reading than for 

writing). 

c) It's hard to argue for storing this structured data in plain GFS files (possible, but very inefficient: 

you'd have to build an index, and deletions of emails would need file compactions). Random writes 

needed (additions and deletions). Email is also read occasionally, so reads will also be needed (but 

this applies to any data). So Bigtable it is. How would you organise the data? Mention (or draw, like 

the Web table): which row key you'd choose, column families, columns. There are many reasonable 

options. Hard requirements: The row key must be sortable for data locality, and unique. The row 

itself should ideally remain small data, or if not possible a (row x column family) should remain small 

data. You can use 2 Bigtables. Points for: choice of framework and reasoning (3%), and organisation 

idea (3%: row key, column families, columns should be mentioned with reasonable values; not very 

picky, but it has to be able to store all the data). 

 

Q5. 

 

a) Column-family data store. This was so easy, it was free points. 

b) Indexing of tablets inside Bigtable 

     Indexing inside tablet -> single disk access 

     Serving requests from memcache (fast), lazy compactions 

     Some more (caching tablet locations, block caching, batched reads) if you go into the dirty details 

    (but these are far less significant). 

c) Data tablets replicated 

    Metadata tablets replicated 

    Even the commit logs are replicated (all of the above end up in GFS files) 

    That lock service (called Chubby at Google), keeping the namespace, is also persisted and 

    replicated (3 out of these 4 are sufficient for max. points here.) 

 

Q6. 

 

a) Load balancing for consumers. The more partitions a topic is divided into, the more concurrent 

consumers can read. The partition is the smallest unit of parallelism. 



b) Kafka only allows 1 consumer (from each consumer group) to read from a partition, so essentially 

as many consumers as partitions. This is a limitation, so they may have to over-partition (make many 

partitions) if there are many consumers. 

 

c) There's (some) difference: in Spark Streaming, a partition is limited to a time (batch) interval, so 

probably contains small data compared to a partition in core Spark. The _sequence_ of Spark 

Streaming partitions in time is roughly equivalent (in data) with the core Spark partition. 

 

d) Spark Streaming has roughly the same set of transformations from core Spark, now called 

"stateless". On top of these, it adds another set of "stateful" transformations (maybe give an 

example related to sliding windows) for operations across multiple time intervals. 

 

Q7. 

 

Partial points go for the thinking on the problem. The closer to real code, the higher the points 

awarded. 

1. Computing G amounts to a simple sum (so plain Python is enough), but you need those fractions 

f_c first. But that's easy: implement a count for the records per class. This is like word count in core 

Spark, or in the SQL lib with an aggregation: D.groupBy(['class']).count().collect(). You get two 

numbers, which you divide by the size of D, D.count(). That's it. 

2. D has to be split now in two datasets, which looks easy: apply a filter to get each part of the split. 

With the smaller datasets ready, you can simply apply the function from 1. again. The fractions w_a, 

w_b are just a division of RDD/DF sizes (count()). 

    It would be nice if this point were solved without copying the splits into new RDDs/DFs. This 

requires writing more code for the Gini Index, and a slightly higher time complexity. 

3. Here, "proposing" splits is the issue. You could do the simplest search possible: take each feature 

column (there are n), compute the average value of each, and propose that as a split. Many other 

data statistics probably reasonable. 

When finally there is complete code: which types of transformations does it use? Many wide 

dependencies? Long for loops? If not, then it's efficient. 


