
201300180 Data & Information – Test 2 – Solutions

Question 1

a) The generalization is both covering and disjoint, which gives the following options:

 three tables Friend, Friend1, Friend2

 two tables Friend1, Friend2 (both including attributes of ‘Friend’)

 a single table Friend with null values for attributes of ‘Friend1’ where appropriate

b) The option with tree tables is easiest to accomodate the associations, see variant 1.
Discarding the superclass is possible, but then we get two different assocations ‘likes’, one for each
subclass. See variant 2.
If the subclasses are discarded and all friends are modelled in a single table, it becomes very very
complicated to model the assocation ‘Has_invited’. This is hardly a viable option.

 Variant 1

Friend(f_no, name, address, email, is_friend1,

 PK (f_no));

Friend1(f_no, maecenas,

 PK (f_no),

 FK (f_no) REF Friend,

 CHECK (4 <= (SELECT COUNT (*)

 FROM Friend2

 WHERE f_no = Friend2.f_1)));

Friend2(f_no, f_1 NOT NULL, relationship,

 PK (f_no),

 FK (f_no) REF Friend,

 FK (f_1) REF Friend1);

Likes(f_no, instr,

 PK (f_no, instr),

 FK (f_no) REF Friend,

 FK (instr) REF Instrument(name));

 Variant 2
Friend1(f_no, name, addresss, email, maecenas,

 PK (f_no),

 CHECK (4 <= (SELECT COUNT (*)

 FROM Friend2

 WHERE f_no = Friend2.f_1)));

Friend2(f_no, name, address, email, f_1 NOT NULL, relationship,

 PK (f_no),

 FK (f_1) REF Friend1);

Likes1(f_no, instr,

 PK (f_no, instr),

 FK (f_no) REF Friend1,

 FK (instr) REF Instrument(name));

Likes2(f_no, instr,

 PK (f_no, instr),

 FK (f_no) REF Friend2,

 FK (instr) REF Instrument(name));

Question 2

Friend

F_no PK

is_friend1: boolean

dc

Friend1

maecenas: boolean

Friend2

Instrument

name PK

contact

Has_invited

relationship

1

* *

likes

is_friend1

<<dynamic>>

0..4

Customer

name

address

email

is_friend: boolean

Performance

date

location

Concert

conductor

Soloist

name

Attends

number_of_tickets

Work

title

composer

is_friend

<<dynamic>>

Contribution

amount

date

of_a

part_of

^ performs_at

plays

1

*

*

*

1..*

*

< gives

1..* 1

Multiplicity 1 for
“gives” (instead of

composition) is also OK

*

*

*

Comments:

 Note the distinction between Concert and Performance of a concert. (You could also have called it
Concert type and Concert).

 From the description it is not clear whether the location can differ across performances of the same
concert. If you have location as attribute of Concert (type) this is also correct.

 For customer no further attributes are given. So it is a matter of choice which attributes of “Friend”
you want to share with “Customer” (and then discard them in the subclass “Friend”). Name and
address are a reasonable choice. Email could be specific for friends, or for any customer.

 Whether [Friend] gives [Contribution] is a composition is arguable.
Pro: the contributions necessarily depends on a friend; without this friend no contribution.
Con: but if the friend ever gets deleted from the system, the money remains to be donated.

 In many cases where multiplicity * is indicated, 1..* is also acceptable (e.g. someone is not a
customer unless they visit at least one performance). The reverse is not true (e.g. a concert without
works makes no sense).

Question 3a

i) E P no h: an employee can have different phone numbers

ii) L C no there could be different contracts for different cars with the same last day

iii) R T yes b: R C; 2: C T; therefore R T

iv) R AT yes similarly, from a and e we find R A, combined with iii) R AT

v) DF R yes c: if the same driver has more rentals, they do not overlap. Therefore Driver
and Final date uniquely identify a Rental.

vi) L T no from ii) we know L C, so there is no way that M could depend on L

vii) CD F no a driver could have made different rentals for the same car

viii) DFE T yes v) + iii) yield DF T . Then also DFE T (even though E has nothing to do
with the involved attributes)

ix) R EP yes E,P are completely independent of the attributes T,C,D,A,F,L.

x) C RL no R,L are not independent of T,D,A,F,E,P, e.g. R F.

Question 3b
1) In order to find out which FDs violate the BCNF condition, we first have to establish the

candidate keys. Schema R has two candidate keys: DEG and DFG.
(You can find these by starting with ABCDEFG as a trivial superkey, and discard attributes that are
fuctionally dependent. E.g. ABCDEFG is a superkey. Then, because A BC, it also holds that ADEFG
is a superkey. Because DE AF it also holds that DEG is a superkey. As there is no functional
dependency between D, E, and G, we conclude that DEG is a candidate key. Similar for DFG.)

All FDs in F violate the BCNF condition, because all of them have a left-hand side that is not a
superkey.

2) First, determine F+ = { A BC, B AC, DE ABCF, FG ABCE }
(where A BC is a shorthand for A B, A C)

Start with (arbitrarily chosen) functional dependency A BC.

(A)+ = ABC. Splitting over A we get

 R1(A,B,C), with F1 = { A BC, B AC }

 R2(A,D,E,F,G), with F2 = { DE AF, FG AE }

Clearly, R1 is in BCNF, candidate keys are A and B.

For R2 we have still have the two candidate keys DEG and DFG.
R2 is not in BCNF, both remaining FDs violate the condition.

So we split R2 (arbitrarily chosen) on DE AF and determine (DE)+ = ADEF).
This yields

 R21(A,D,E,F), with F11 = { DE AF }

 R22(D,E,G), with F12 = { }

3) From the original functional dependencies, FG AE was lost in the decomposition in step 2.
The other FDs still exist in F1 U F21 U F22 .

Alternatively,

If we had chosen FG AE as the basis for further decomposition of R2, we would have obtained

 R21(A,E,F,G), with F11 = { FG AE }

 R22(D,F,G), with F12 = { }
with dependency DE AF lost in the decomposition.

If we would have started with DE AF or FG AE, eventually we would have obtained one of the
above results.

