Tag : Calc1B.21-22.SampleTest2
Course : Calculus 1B
Duration : 2 hours

Motivate all your open answers.
The use of electronic devices is not allowed.

The exam

There are 36 points in this exam:
Multiple Choice (6 points): Q1 and Q5.
Final Answer (8 points): Q2, Q4 and Q8.
Open Answer (22 points): Q3, Q6, Q7, Q9 and Q10.

The answer form

Use the answer form to write down your answers. Clearly fill out your name, student number and study programme. Any text outside a frame will be ignored.

Question types

Multiple Choice

Only select the most appropriate answer out of the alternatives on the answer form.

Final answer

On the answer form, in the corresponding text frame you provide only one answer. Do not write down a calculation, explanation or motivation. If you do write down a calculation, explanation or motivation, it will not be taken into account for grading.

Open answer

You provide a full calculation or motivation in the text frame corresponding to the question. The calculation or motivation will be graded.

Extra writing space

If you need more space, you can write in the frame provided at the end of the answer form. Clearly refer to this space in the original answer.

1. [3 pt] Given is the function

$$
f(x)=\sin ^{2}(x)
$$

Find a formula for the Riemann sum for f on the interval $[0, \pi]$ by dividing $[0, \pi]$ into n equal subintervals and using the left-hand endpoint of each subinterval to evaluate f.
Choose from the alternatives below.
A) $\sum_{k=1}^{n} \frac{\pi \sin ^{2}\left(\frac{\pi k}{n}\right)}{n}$
B) $\sum_{k=1}^{n} \frac{\pi \sin ^{2}\left(\frac{\pi(k-1)}{2 n}\right)}{n}$
C) $\sum_{k=1}^{n} \frac{\pi \sin ^{2}\left(\frac{\pi(2 k-1)}{n}\right)}{n}$
D) $\sum_{k=1}^{n} \frac{\pi \sin ^{2}\left(\frac{\pi(k-1)}{n}\right)}{n}$
E) $\sum_{k=1}^{n} \frac{\pi \sin ^{2}\left(\frac{\pi k}{n}\right)}{2 n}$
F) $\sum_{k=1}^{n} \frac{\pi \sin ^{2}\left(\frac{\pi k}{2 n}\right)}{n}$
G) $\sum_{k=1}^{n} \frac{\pi \sin ^{2}\left(\frac{\pi\left(k-\frac{1}{2}\right)}{n}\right)}{n}$
H) $\sum_{k=1}^{n} \frac{\pi \sin ^{2}\left(\frac{\pi(k-1)}{n}\right)}{2 n}$
2. [2 pt] Only write your final answer in the box on the answer form.

Evaluate

$$
\int_{0}^{2 \sqrt{2}}\left(-2-\sqrt{8-x^{2}}\right) \mathrm{d} x
$$

using the relation between area and integral.
(Hint: Sketch the graph of the integrand.)
3. [4 pt] Evaluate

$$
\int_{0}^{\sqrt{3}} \frac{\arctan ^{3}(x)}{1+x^{2}} \mathrm{~d} x
$$

4. [3 pt] Only write your final answer in the box on the answer form.

Evaluate

$$
\int x^{2} \ln (x) \mathrm{d} x
$$

5. [3 pt] Compute the sum of

$$
\sum_{n=0}^{\infty} 2\left(\frac{x}{2}\right)^{n}+\left(\frac{x-2}{x}\right)^{n} \text { for } 1<x<2
$$

Choose from the alternatives below.
A) $\frac{4}{2-x}-\frac{x}{2}$
B) $\frac{2}{1-x}-\frac{x}{2}$
C) $\frac{4}{2-x}+\frac{x}{2}$
D) $\frac{2}{x+1}-\frac{x}{2}$
E) $\frac{4}{x-2}-\frac{x}{2}$
F) $\frac{2}{\frac{1}{2}-x}-\frac{x}{2}$
G) $\frac{4}{x-2}+\frac{x}{2}$
H) $\frac{2}{x+\frac{1}{2}}-\frac{x}{2}$
6. [4 pt] Determine the Taylor polynomial of order 3 generated by $f(x)=x^{2} e^{x}$ at $x=1$.
7. [5 pt] Solve the following differential equation subject to the given initial condition:

$$
\left\{\begin{array}{l}
x \frac{\mathrm{~d} y}{\mathrm{~d} x}=y^{2}\left(x^{2}+1\right), \quad x>0 \\
y(1)=1
\end{array}\right.
$$

8. [3 pt] Only write your final answer in the box on the answer form.

Let $z=8 e^{-i \frac{\pi}{4}}$. Compute

$$
w=z-i \bar{z},
$$

where \bar{z} denotes the complex conjugate of z.
Express w in the form $a+i b$ with a and b real numbers.
9. [3 pt] Determine all solutions in \mathbb{C} of the equation $z^{5}+32 i=0$.
10. [6 pt] Determine the unique (real) solution to the following initial value problem:

$$
y^{\prime \prime}+6 y^{\prime}+9 y=2 e^{-2 x}, \quad y(0)=0, \quad y^{\prime}(0)=2 .
$$

The End.

