UNIVERSITY OF TWENTE

Department of Electrical Engineering, Mathematics and Computer Science
Solution exam Linear Algebra on Tuesday July 21, 2020, 18.15 - 20.15 hours.
2.

Consider the following system of equations:

$$
\left\{\begin{aligned}
x_{1}+x_{2}+2 x_{3}+x_{4} & =2 \\
\beta x_{2}+x_{3}+x_{4} & =0 \\
\alpha x_{3} & =
\end{aligned}\right.
$$

We known that the solution set of the system is given by:

$$
\left(\begin{array}{c}
2 \\
1 \\
0 \\
-1
\end{array}\right)+\operatorname{Span}\left\{\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right)\right\}
$$

Determine all possible α and β for which the above is correct.
First we check whether the given solution satisfies our linear system of equations. First we check whether

$$
\left(\begin{array}{c}
2 \\
1 \\
0 \\
-1
\end{array}\right)
$$

satisfies the given system of equations. It is easily seen that this yields that $\beta=1$. Next we check whether

$$
\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right)
$$

satisfies the homogeneous version of our system of equations:

$$
\left\{\begin{aligned}
x_{1}+x_{2}+2 x_{3}+x_{4} & =0 \\
\beta x_{2}+x_{3}+x_{4} & =0 \\
\alpha x_{3} & =0
\end{aligned}\right.
$$

and it easily see that this is the case for $\beta=1$. We still have not found any restriction on α. However, we have not checked whether there are additional solutions. The augmented matrix of the system:

$$
\left(\begin{array}{lllll}
1 & 1 & 2 & 1 & 2 \\
0 & \beta & 1 & 1 & 0 \\
0 & 0 & \alpha & 0 & 0
\end{array}\right)
$$

is already in the echelon form (given $\beta=1$). However if $\alpha=0$ then we have only two pivots and two free variables and hence we will find additional solutions. Therefore, we will find our solution set (with one free variable) only if $\alpha \neq 0$.
3.

For which values of α is the matrix:

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & \alpha \\
0 & \alpha & 1
\end{array}\right)
$$

diagonalizable.
Let us compute the eigenvalues of this matrix. The characteristic polynomial is

$$
p(\lambda)=\operatorname{det}\left(\begin{array}{ccc}
\lambda-1 & 0 & -1 \\
0 & \lambda-1 & -\alpha \\
0 & -\alpha & \lambda-1
\end{array}\right)=(\lambda-1)\left[(\lambda-1)^{2}-\alpha^{2}\right]
$$

The eigenvalues are the zeros of this polynomial and hence equal to $1,1-\alpha$ and $1+\alpha$. Clearly the eigenvalues are all distinct for $\alpha \neq 0$. If all eigenvalues are distinct then it is known that the matrix is diagonalizable.
For $\alpha=0$ we find:

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and we find that we have a triple zero of the characteristic polynomial in 0 . Therefore, the matrix is diagonalizable if we can find three independent eigenvectors. However, if we solve

$$
(I-A) \mathbf{x}=\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \mathbf{x}=\mathbf{0}
$$

then we find:

$$
\mathbf{x} \in \operatorname{Span}\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right\}
$$

and hence we can only find two independent eigenvectors. Therefore for $\alpha=0$ the matrix is not diagonalizable.
4.

Given are matrices A and B and C

$$
A=\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right), \quad B=\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right), \quad C=\left(\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right)
$$

Find all matrices X such that $A X-X B=C$.
Let

$$
X=\left(\begin{array}{ll}
x_{1} & x_{3} \\
x_{2} & x_{4}
\end{array}\right)
$$

Working out $A X-X B=C$ we then find:

$$
\begin{aligned}
-x_{1}+x_{2}-x_{3} & =-1 \\
x_{4} & =1
\end{aligned}
$$

We find the following solution set:

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\operatorname{Span}\left\{\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right)\right\}
$$

5.

Find all possible α for which the volume of the parallelepiped with vertices $(0,0,0)$, $(0,1,0),(\alpha, 0, \alpha)$ and $(2,0, \alpha)$ is equal to 3 .

The volume of the parallelepiped is given by:

$$
\left|\operatorname{det}\left(\begin{array}{lll}
0 & \alpha & 2 \\
1 & 0 & 0 \\
0 & \alpha & \alpha
\end{array}\right)\right|=\left|-\alpha^{2}+2 \alpha\right|
$$

We need either:

$$
-\alpha^{2}+2 \alpha=3
$$

or

$$
-\alpha^{2}+2 \alpha=-3
$$

The first one does not yield any solutions. The second one yields $\alpha=-3$ or $\alpha=1$.
6.

Consider an invertible matrix $A \in \mathbb{R}^{n \times n}$.
a) If λ is an eigenvalue of A show that λ^{-1} is an eigenvalue of A^{-1}.

If λ is an eigenvalue of A then clearly $\lambda \neq 0$ (matrix is invertible). Moreover there exists $\mathbf{x} \neq \mathbf{0}$ such that

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

multiplying the equation with $\lambda^{-1} A^{-1}$ on the left we obtain:

$$
\lambda^{-1} \mathbf{x}=A^{-1} \mathbf{x}
$$

but this means that λ^{-1} is an eigenvalue of A^{-1}.
b) Given is that the matrix $B=A^{3}-2 A^{2}$ is invertible. Show that A does not have eigenvalue 2
Assume 2 is an eigenvalue of A. Then there exists $\mathbf{x} \neq \mathbf{0}$ such that

$$
A \mathrm{x}=2 \mathrm{x}
$$

but then:

$$
B \mathbf{x}=\left(A^{3}-2 A^{2}\right) \mathbf{x}=(8-8) \mathbf{x}=\mathbf{0}
$$

But since $\mathbf{x} \neq \mathbf{0}$ this yields a contradiction with B invertible. Hence A does not have eigenvalue 2
7.

We have the following matrix:

$$
A=\left(\begin{array}{ccc}
\alpha & \alpha+\beta-1 & -1 \\
2-\alpha & 1-\beta-\alpha & -1 \\
\alpha & \alpha-2 & -1
\end{array}\right)
$$

We know that a basis for $\operatorname{Null} A$ is given by:

$$
\left\{\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)\right\}
$$

while a basis for $\operatorname{Col} A$ is given by:

$$
\left\{\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right\}
$$

Determine α and β.
Given our basis for Null A, we know that we must have:

$$
A\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)=\mathbf{0}
$$

This yields $\alpha=1$ and hence:

$$
A=\left(\begin{array}{lll}
1 & \beta & -1 \\
1 & -\beta & -1 \\
1 & -1 & -1
\end{array}\right)
$$

It is easily verified that the first and third column of A are in the given $\operatorname{Col} A$. However, the second column of A is only in the given $\operatorname{Col} A$ if $\beta=-1$. We find:

$$
A=\left(\begin{array}{ccc}
1 & -1 & -1 \\
1 & 1 & -1 \\
1 & -1 & -1
\end{array}\right)
$$

It is easily verified that this matrix has the required $\operatorname{Col} A$ and $\operatorname{Null} A$.
8.
$T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the linear transformation which first mirrors each point $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ in the line $y=x$ and next rotates around the origin over α radians (counterclockwise).
The representation matrix of T is given by:

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Determine $\alpha \in[0,2 \pi)$.

Let's first consider $(1,0)$. After the mirroring this is in $(0,1)$. The vector $(0,1)$ should then be rotated α radians counterclockwise and (according to the representation matrix) end up in (1,0). It is easily seen that this is a rotation over $3 \pi / 2$ radians.

Let's also consider $(0,1)$. After the mirroring this is in $(1,0)$. The vector $(1,0)$ should then be rotated α radians counterclockwise and (according to the representation matrix) end up in $(0,-1)$. It is easily seen that this is also a rotation over $3 \pi / 2$ radians.
Therefore $\alpha=3 \pi / 2$.
9.

Is the set $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid(x-z)(y-z)=0\right\}$ a subspace of \mathbb{R}^{3} ?
For a subspace we have two requirements: If \mathbf{x}_{1} and \mathbf{x}_{2} are in the set S then we should have:

$$
\lambda \mathbf{x}_{1} \in S
$$

for all λ and

$$
\mathbf{x}_{1}+\mathbf{x}_{2} \in S
$$

The first property is satisfied in this case. However, the second property is not satisfied. For instance:

$$
\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

are both in S but their sum:

$$
\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)+\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)
$$

is clearly not is S. Therefore it is not a subspace.

