DEPARTMENT EEMCS
Date: June 9, 2017

Test: Programming Paradigms — Functional Programming

June 16, 2017
13:45 — 16:45

Remarks:

- During this test you may use the syllabus: A Short Introduction to Functional
Programming as published on Blackboard, nothing else.

- You may use predefined Haskell functions and operators from the packages
Prelude, Data.List, Data.Char, Data. Maybe.

- Mention the type for every function that you define.

- Judgement: there are three exercises of equal weight.

- Style and elegancy also play a role in judgement, e.g., do not use unnecessary
helper functions.

- Good luck!

Exercise 1.
a. A number n is perfect if the total of all dividers of n (including 1, but
excluding n) equals n itself. For example, 6 and 28 are perfect numbers
since 1+2+3 = 6 and 1+2+44-7+14 =28.

Write a function perfect which yields the list of all perfect numbers
simaller than a given number m.

b. A list zs of length n is called a jolly jumper if the absolute vaiues of
the differences between all pairs of consecutive numbers are precisely all

numbers in the range 1,...,n—1. For example, [1,4,2,3] is a jolly jumper,
since the list of absolute diffences of consecutive elements in the given list
is [3,2,1].

Write two variants of a function which tests whether a given list is a jolly
jumper: one with recursion, one with higher order functions.

c. A matrix is a list of lists of numbers, where the “inner lists” are the
rows of the matrix. All rows are equally long.

Define two functions eddRows and addColumns that yield the totals of
all rows and columns (respectively) of a matrix. Both functions have to be
defined in three ways: with recursion, with higher order functions, and with
list comprehension.

d. Define the function map by using foldl.



Exercise 2.

a. Define a type for trees in which a node may have an arbitrary number
of subtrees, and a node contains a value of a type that is the same for every
node. A Leaf then is a node with zero subtrees.

Define special cases of this type for trees with a number (Int) at its
nodes, and for trees with a tuple of a character and a boolean at each node.
You have to use the above defined type for these specialisations.

b. Write a function which yields the maximum of all numbers in a tree
(for the special case where the values at the nodes are numbers).

c. Write a function mapTree which applies a function f to all values in a
tree,

d. A pafh in a tree is a list of numbers that indicate which subtree to
choose at each node. For example, the path (2,1, 4] starts at the root of a
tree, and ends a the node that is found as follows: take subtree with index 2
at the root of the tree, then the subtree with index 1, and then the subtree
with index 4. _

Write a function that yields the path from the root to a specific value in
the tree. You may assume that all values in the tree are different.

Exercise 8.

The Pattern Match Machine

The Pattern Match Machine contains a sequence of elements ps (the pat-
tern) which have to be matched against an incoming stream of values z.

pattmatch

For example, if the pattern is as follows:
[1,3,1]

then the stream of input values
[2,5,1,3,1,3,1,0, 2,1, 3, 2]

contains this pattern fwo times.

The Pattern Match Machine is realized by a recursive function patimatch,
that is, this function consumes one input value at a time, and checks whether
the pattern occurs in the input stream. The function should have as its first



argument a given pattern, and it should yield True if the current input
completes the pattern, and False otherwise. Thus, in the above example the
output should be (T, F are shorthand for True, False):

[F, F, F,F, T,F, T, F, F, F, F, F]

Note that if the length of the pattern is n, then your function has to “re-
member” n—1 previous input values.

a. Give the type for the function pattmaich. You may assume that the
elemnts of the pattern and the input stream are Ints.

b. Write the function pattmatch.

c. Write a variant of this function pattmatch that counts how many times
the pattern passes by. The result of your function should now be the number
of matches so far. Thus, in the above example the output should be:

[0,0,0,0,1,1,2,22 2,2 2]



