Sged (ks

.
2150 19e s

Exam Software Security, 201600051

University of Twente

31 January 2018, 13:30-16:30

This exam consists of 9 questions of equal weight. It is a closed-book exam:
the use of any printed or online material is prohibited. Short and to-the-
point answers are highly preferred over long stories.

1. Spotting low-level vulnerabilities in C.

(a) The following code-fragment in C has three printf-statements. Which
of these is the most secure one? Which is the least secure? Why?

int main (int argc, char* argv[]) { W
‘char s1[] = "Ys, %d\n";

P const char s2[] = "Ys, %d\n";

char* s3;

™ s3=argv[1];

external_function(si,s2,s3);

printf(s1,"exam",50);

printf(s2,"software",50);

printf(s3,"security",50);
5

(b) The following C-fragment first copies 10 characters from the input to
buffer, and then copies buffer to dest.
Explain why this can still lead to a buffer overflow?

char buffer[10], dest[10];
strncpy (buffer,argv([1],10);
strcpy(dest,buffer);

2 Low-level attacks and counter-measures.

(a) What is the dlﬁerencemmww
reuse attack” 7@11ch category does “return-to-libc” belong?

e e

(b) How do “stack canaries” (partially) protect against both of these at-
tacks?

« (c) “Non-executable memory” protects only against one of these attacks.

Which one? (explain your answer).

3. Memory- and type-safety in programming languages.
(a) When is a programming language “memory-safe”?
(b) When is a programming language “type-safe”?

1 (c) Which of these two notions is stronger? Why?

{ (d) Provide an example of violation of type-safety in C?

4. Rust as a secure programming language.

(a) Why are variables immutable by default in Rust?
, (b) How does the ownership concept of Rust avoid (many) memory leaks?
(¢) Ownership also prevents programming bugs due to aliasing. How can
ownership be transferred permanently or temporarily?
5 McGraw introduces security touchpoints all over the software life cycle.
.~ (a) Mention two of McGraw’s touchpoints in the early design phase (when
identifying requirements and use cases)?

4 (b) Mention two touchpoints in the late design phase (when the code exists
already)?

2 (c) Explain the difference between security flaws and security bugs?
A (d) When does a flaw/bug become a security vulnerability?

(e) How do you identify good test cases for security testing?

6. The AFL Fuzzer generates and improves a set of test cases by “genetic
programming”.

(a) Mention two different mutations that AFL dpplies to the current gen-
& eration of test cases, in order to generate new test cases?

(b) What is the (fitness) criterion for AFL to decide which test cases should
be selected?

(¢) Fuzzing with AFL reports “crashes” and “hangs” in the program under
X test. Mention two methods that can be combined with AFL, to discover
more security problems?

X

7. Symbolic execution generates constraints on symbolic input variables while
executing a program.

{ (a) Consider the following (pseudo)-code. Under which constraint can the
assertion be reached?

X := input();
y := input();
if (x>y)
if (x+y>3)
return 0K;
else
assert ERROR;
else
return OK;

X % (b) How are the generated constraints solved in practice, to get concrete
test input data?

¢ (c) Explain the “path problem” for symbolic execution?

% (d) Another issue for symbolic execution is that library code is unknown
or very large. Which technique extends symbolic execution to handle
library calls?

8. Input validation and web programming.

o

N (a)

o (@

Mention three countermeasures against command/filename injection
attacks?

What is the difference between CSRF (cross-site request forgery) and
XSS (cross-site scripting) injection?

What does SOP (Same~origin—policy) enforce, and why can it be by-
passed by XSS?

Consider the following code fragment in PHP. Why is this insecure?
(refer to the erroneous line number)

$dir = $_GET[’option’]
if ($dir = 1) {
include("1/function.php")
} else {
if ($dir = 2)1{
include("2/function.php")
} else {
include ("error/$dir/unknownvalue.php")

T}

O 0O ~N O Ok W=

Traditional scripting languages use string concatenation with place
holders to construct SQL queries. What support do modern program-
ming languages (such as Wyvern) offer to construct queries in a more
secure manner?

What is the best practice for positioning input validation code within
a large program?

What is the essence of a second-order SQL injection?

