Solutions Mathematics B2 Sample Test 1 (Newton)

Kenmerk: TW2013/MathB2/SampleTest1

1.

$$
\lim _{x \rightarrow \infty}\left(\frac{2 x^{2}+4 x-1}{x^{2}+7 x}\right)^{10}=\left(\lim _{x \rightarrow \infty} \frac{2 x^{2}+4 x-1}{x^{2}+7 x}\right)^{10}=\left(\lim _{x \rightarrow \infty} \frac{2+\frac{4}{x}-\frac{1}{x^{2}}}{1+\frac{7}{x}}\right)^{10}=2^{10}
$$

2.

$$
f(x)= \begin{cases}x^{2}+2 x+1 & \text { for } x \leq 0 \\ 1-\sqrt{x} & \text { for } x>0\end{cases}
$$

(a)

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}\left(x^{2}+2 x+1\right)=1 \\
& \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}(1-\sqrt{x})=1
\end{aligned}
$$

So $\lim _{x \rightarrow 0} f(x)$ exists, equals 1 , and $f(0)=1$; so $f(x)$ is continuous at $x=0$.
(b) For $x<0$ we have $f^{\prime}(x)=0 \Leftrightarrow 2 x+2=0 \Leftrightarrow x=-1$.

For $x>0$ we have $f^{\prime}(x)=0 \Leftrightarrow-\frac{1}{2 \sqrt{x}}=0$, so here are no solutions.
Critical points are $x=-1$ and $x=0$
endpoints $x=-3$ and $x=2$
$f(-3)=4, f(-1)=0, f(0)=1$ and $f(2)=1-\sqrt{2}$
We conclude: The absolute maximum is 4 and the absolute minimum is $1-\sqrt{2}$
3.

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} x^{x}=\lim _{x \rightarrow 0^{+}} e^{x \ln x} \\
& \lim _{x \rightarrow 0^{+}} x \ln x=" 0 \cdot-\infty " \text { undetermined }
\end{aligned}
$$

Make that we can apply l'Hôpital's rule:

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} x \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{\frac{1}{x}}=\left(" \frac{-\infty}{\infty} ", \text { use l'Hôpital }\right) \\
& \lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{\frac{-1}{x^{2}}}=\lim _{x \rightarrow 0^{+}}-x=0, \text { therefore } \lim _{x \rightarrow 0^{+}} x^{x}=e^{0}=1
\end{aligned}
$$

4.

$$
f(x)= \begin{cases}\frac{x y}{x^{2}+y^{2}} & \text { for }(x, y) \neq(0,0) \\ 0 & \text { for }(x, y)=(0,0)\end{cases}
$$

(a) f is continuous at $\left(x_{0}, y_{0}\right)$ by definition:
i. f is defined at $\left(x_{0}, y_{0}\right)$
ii. $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)$ exists
iii. $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=f\left(x_{0}, y_{0}\right)$
f is not continuous at $(0,0)$ for since if we approach $(0,0)$ first by the curve $x=y$ (diagonal) and secondly by the line $y=0$ (x -axis) we get different limits:

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)=\lim _{x \rightarrow 0} \frac{x^{2}}{x^{2}+x^{2}}=\frac{1}{2}
$$

respectively

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)=\lim _{x \rightarrow 0} \frac{0}{x^{2}+0}=0
$$

So $\lim _{(x, y) \rightarrow(0.0)} f(x, y)$ does not exist.
(b)

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0-0}{h}=0 \\
& \frac{\partial f}{\partial y}(0,0)=\lim _{h \rightarrow 0} \frac{f(0, h)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0-0}{h}=0
\end{aligned}
$$

(c) Tangent plane is:

$$
\begin{aligned}
& f_{x}(1,2)(x-1)+f_{y}(1,2)(y-2)-\left(z-\frac{2}{5}\right)=0 \\
& f_{x}=\frac{\partial f}{\partial x}=\frac{y\left(x^{2}+y^{2}\right)-2 x \cdot x y}{\left(x^{2}+y^{2}\right)^{2}}, \text { so } f_{x}(1,2)=\frac{6}{25} \\
& f_{x}=\frac{\partial f}{\partial y}=\frac{x\left(x^{2}+y^{2}\right)-2 y \cdot x y}{\left(x^{2}+y^{2}\right)^{2}}, \text { so } f_{y}(1,2)=\frac{-3}{25} \\
& \text { answer: } \frac{6}{25}(x-1)+\frac{-3}{25}(y-2)-\left(z-\frac{2}{5}\right)=0
\end{aligned}
$$

