Solution/Correction standard, 1st Test Mathematics B1; October 24, 2014.

Kenmerk : Leibniz/toetsen/Exam-MathB1-1415-Solutions
Course : Mathematics B1 (Leibniz)
Vakcode : 191521010
Date : October 24, 2014

Solution/Correction standard

1. [3 pt] Method 1

The differential equation is linear, it is of the form $y^{\prime}+P(x) y=Q(x)$ with $P(x)=$ $3 x^{2}$ and $Q(x)=0$. The integrating factor is

$$
\begin{equation*}
v(x)=e^{\int P(x) \mathrm{d} x}=e^{\int 3 x^{2} \mathrm{~d} x}=e^{x^{3}} . \tag{1pt}
\end{equation*}
$$

Multiply the equation with $v(x)$: The general solution is

$$
\begin{aligned}
v(x) y^{\prime}+v(x) \cdot 3 x^{2} y & =0 \\
v(x) y^{\prime}+v^{\prime}(x) y & =0 \\
\frac{d}{d x}(v(x) y(x)) & =0 \\
v(x) y(x) & =C,
\end{aligned}
$$

hence $y(x)=\frac{C}{v(x)}=C e^{-x^{3}}$.
Remark: For the derivation [0.5 pt] and for the answer [0.5 pt].
Use the initial condition to find C :

$$
5=y(0)=C e^{0}=C \quad \Rightarrow \quad C=5 .
$$

The solution therefore is:

$$
y(x)=5 e^{-x^{3}} .
$$

Alternative Method, not treated in the lectures.
Basically, the equation is treated as a separable differential equation. The equation can be rewritten as

$$
\frac{y^{\prime}}{y}=-3 x^{2} .
$$

Integrate left and right hand side, or notice that y^{\prime} / y is the logarithmic derivative of y :

$$
\ln |y(x)|=-x^{3}+K
$$

with real constant K. From this follows

$$
|y(x)|=e^{-x^{3}+K}=e^{-x^{3}} e^{K}=C_{+} e^{-x^{3}}
$$

with real positive constant $C_{+}=e^{K}$. Since solutions must be continuous, taking the absolute value means

$$
\begin{equation*}
y(x)= \pm C_{+} e^{-x^{3}}=C e^{-x^{3}} \tag{1}
\end{equation*}
$$

with non-zero constant C.
Since the constant function $y(x)=0$ is also a solution, (1) holds for every real constant C.
See method 1 for finding the value of C.
2. (a) [2 pt] For the modulus and the argument find real and imaginary part of z :

$$
z=\frac{\sqrt{2} i}{1-i}=\frac{\sqrt{2} i}{1-i} \frac{1+i}{1+i}=\frac{1}{2} \sqrt{2}(i-1)
$$

[1 pt]
Hence the modulus equals

$$
\begin{equation*}
|z|=\sqrt{\left(\frac{-1}{2} \sqrt{2}\right)^{2}+\left(\frac{1}{2} \sqrt{2}\right)^{2}}=\sqrt{\frac{1}{2}+\frac{1}{2}}=1 \tag{0.5pt}
\end{equation*}
$$

Alternatively, you may use that $|z|^{2}=z \bar{z}$:

$$
z \bar{z}=\frac{\sqrt{2} i}{1-i} \frac{\sqrt{2}(-i)}{1+i}=\frac{-2 i^{2}}{1^{2}+1^{2}}=1
$$

hence $|z|=\sqrt{1}=1$.
[0.5 pt]
For the argument, there are also two alternatives.

Alternative 1:

For the argument θ we have

$$
\tan \theta=\frac{\operatorname{Im} z}{\operatorname{Re} z}=\frac{-\frac{1}{2} \sqrt{2}}{\frac{1}{2} \sqrt{2}}=-1
$$

This means that $\theta=-\frac{\pi}{4}$ or $\theta=\frac{3 \pi}{4}$. From $\operatorname{Re} z<0$ we readily conclude that $\theta=\frac{3 \pi}{4}$.
[0.5 pt]
Alternative 2:
Use a picture, see figure 1.
[0.5 pt]
(b) [1 pt] Since i and z lie in the unit circle, the question is equivalent to the following problem: does there exist a positive integer n for which $n \cdot \frac{3}{4} \pi=$ $\frac{1}{2} \pi+2 k \pi$ for some integer k ?
[0.5 pt]
Solving for n gives the equation

$$
n=\frac{8 k+2}{3} .
$$

Figure 1: z lies on the unit circle (assignment 2).

We are therefore looking for a value of k for which $8 k+2$ is a multiple of 3 . Make a table to find the appropriate value of k.

k	$8 k+2$	multiple of 3	n
0	2	no	-
1	10	no	-
2	18	yes	6

So the answer is "yes", and the smallest positive integer n for which $z^{n}=i$ is $n=6$.
[0.5 pt]
3. [1 pt] Let $z=x+i y$ with $x, y \in \mathbb{R}$. Then $|z|=\sqrt{x^{2}+y^{2}}$.
[0.5 pt]
For $|\bar{z}|$ we then have

$$
\begin{aligned}
|\bar{z}| & =|x-i y| \\
& =\sqrt{x^{2}+(-y)^{2}} \\
& =\sqrt{x^{2}+y^{2}}=|z| .
\end{aligned}
$$

[0.5 pt]
Alternatively, one can write

$$
\begin{aligned}
|\bar{z}|^{2} & =|x-i y|^{2} \\
& =x^{2}+(-y)^{2} \\
& =x^{2}+y^{2}=|z|^{2} .
\end{aligned}
$$

Taking square roots then gives $|z|=|\bar{z}|$.
[0.5 pt]
Alternative 2: Any complex number z_{0} can be uniquely written as $z_{0}=r_{0} e^{i \varphi_{0}}$ with $r_{0}=\left|z_{0}\right|$ and $\varphi_{0}=\arg \left(z_{0}\right)$.
[0.5 pt]
Hence $z=r e^{i \varphi}$ and so $\bar{z}=r e^{-i \varphi}$. Thus $|z|=r=|\bar{z}|$.
4. [5 pt] Step 1 (total: 2 pt): solve the homogeneous equation $y^{\prime \prime}+2 y^{\prime}+10 y=0$.

The corresponding auxiliary or characteristic equation is $\lambda^{2}+2 \lambda+10=0$. This equation has two imaginary roots:

$$
\lambda=-1+3 i \quad \text { and } \quad \lambda=-1-3 i .
$$

Therefore the general real solution of the homogeneous equation is

$$
y(x)=e^{-x}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right) .
$$

Alternatively, the general complex solution of the homogeneous equation is

$$
\begin{equation*}
y(x)=c_{1} e^{(-1+3 i) x}+c_{2} e^{(-1-3 i) x} \tag{0.5pt}
\end{equation*}
$$

Remark: The remaining half point is for writing the final answer in real form.
Step 2 (total: 1 pt): find a particular solution.
We try a multiple of e^{x}, in other words: define

$$
\begin{equation*}
y_{p}(x)=a e^{x} \tag{0.5pt}
\end{equation*}
$$

with unknown constant a. Notice that

$$
y_{p}^{\prime \prime}(x)=y_{p}^{\prime}(x)=a e^{x}
$$

hence

$$
y_{p}^{\prime \prime}+2 y_{p}^{\prime}+10 y_{p}=13 a e^{x}
$$

From this readily follows that $a=1$.
Step 3 (total: 2 pt): determine the constants c_{1} and c_{2}.
The general solution is

$$
\begin{equation*}
y(x)=e^{-x}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)+e^{x} . \tag{1}
\end{equation*}
$$

From $y(0)=1$ follows

$$
1=y(0)=1 \cdot\left(c_{1} \cdot 1+c_{2} \cdot 0\right)+1=c_{1}+1,
$$

hence $c_{1}=0$.
The general solution (1) simplifies to

$$
y(x)=c_{2} e^{-x} \sin (3 x)+e^{x} .
$$

Differentiate $y(x)$:

$$
y^{\prime}(x)=c_{2}\left(-e^{-x} \sin (3 x)+3 e^{-x} \cos (3 x)\right)+e^{x} .
$$

From $y^{\prime}(0)=4$ follows

$$
4=y^{\prime}(0)=c_{2}(-1 \cdot 0+3 \cdot 1 \cdot 1)+1=3 c_{2}+1
$$

hence $c_{2}=1$.
The solution of the initial value problem is

$$
y(x)=e^{-x} \sin (3 x)+e^{x} .
$$

5. (a) [2 pt] Calculate the cross product of \mathbf{u} and \mathbf{v} :

$$
\mathbf{q}=\mathbf{u} \times \mathbf{v}=\left[\begin{array}{rr}
1 & -1 \\
-1 & \mathbf{X}_{3}^{1}
\end{array}\right]{ }_{-1}^{1} \mathbf{X}_{2}^{1}=\langle 5,4,1\rangle . \quad[2 \mathbf{p t}]
$$

(b) [1 pt] Method 1: Notice that by one of the defining properties of the cross product there holds $\mathbf{u} \perp \mathbf{q}$ and $\mathbf{u} \perp \mathbf{u} \times \mathbf{w}$. So any non-zero multiple of u will do the trick.
[1 pt]
Method 2: First calculate $\mathbf{u} \times \mathbf{w}$:

$$
\mathbf{u} \times \mathbf{w}=\left[\begin{array}{rr}
1 & -1 \\
1 & 3 \bar{X}_{5}^{1}
\end{array} \chi_{1}^{1} \bar{X}_{3}^{1}=\langle 8,4,4\rangle\right.
$$

[0.5 pt]

Now by construction $\mathbf{q} \times(\mathbf{u} \times \mathbf{w})$ will be orthogonal to \mathbf{q} and $\mathbf{u} \times \mathbf{w}$.

$$
\mathbf{q} \times(\mathbf{u} \times \mathbf{w})=\left[\begin{array}{ll}
5 & 4 \tag{0.5pt}\\
8 & 4
\end{array} \mathbf{X}_{4}^{1} \times_{8}^{5} \mathbf{X}_{4}^{4}=\langle 12,-12,-12\rangle=12 \mathbf{u}\right.
$$

6. (a) $[1 \mathrm{pt}] \quad$ A parametrization of ℓ is

$$
\ell: \mathbf{x}(t)=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]+t\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
t+1 \\
t+2 \\
-t
\end{array}\right] \quad t \in \mathbb{R} .
$$

(b) $[2 \mathrm{pt}]$ Solve the equation $|\mathbf{x}(t)|=1$:

$$
\begin{align*}
|\mathbf{x}(t)|^{2} & =1^{2} \\
(t+1)^{2}+(t+2)^{2}+(-t)^{2} & =1 \\
\left(t^{2}+2 t+1\right)+\left(t^{2}+4 t+4\right)+t^{2}-1 & =0 \\
3 t^{2}+6 t+4 & =0 \tag{1pt}
\end{align*}
$$

The discriminant is -12 , so the quadratic equation has no real solutions. Conclusion: there are no points on ℓ with distance 1 to the origin. [1 pt]
(a) $[2 \mathrm{pt}] \quad$ Let $z=\frac{1}{y}$, then

$$
\begin{aligned}
z^{\prime} & =\frac{d}{d x}\left(\frac{1}{y}\right) \\
& =-\frac{1}{y^{2}} y^{\prime} \\
& =-\frac{1}{y^{2}}\left(4 y^{2}+y\right) \\
& =-4-\frac{1}{y} \\
& =-4-z,
\end{aligned}
$$

hence $\alpha=-1$ and $\beta=-4$.
(b) [2 pt] The differential equation $z^{\prime}=-z-4$ is linear, it is of the form $y^{\prime}+$ $P(x) y=Q(x)$ with $P(x)=1$ and $Q(x)=-4$. The integrating factor is

$$
v(x)=e^{\int P(x) \mathrm{d} x}=e^{\int 1 \mathrm{~d} x}=e^{x} .
$$

Multiply the equation with $v(x)$: The general solution is

$$
\begin{aligned}
v(x) z^{\prime}+v(x) z & =-4 v(x) \\
e^{x} z^{\prime}+\frac{d}{d x}\left(e^{x}\right)(x) z & =-4 e^{x} \\
\frac{d}{d x}\left(e^{x} z(x)\right) & =-4 e^{x} \\
e^{x} z(x) & =-4 e^{x}+C \\
z(x) & =-4+C e^{-x}
\end{aligned}
$$

hence $y(x)=\frac{1}{C e^{-x}-4}$.
Remark: For the derivation [0.5 pt] and for the answer [0.5 pt]
The escape equation $z^{\prime}=-3 z+33$ is solved in the same way: the integrating factor is

$$
\begin{equation*}
v(x)=e^{\int 3 \mathrm{~d} x}=e^{3 x} . \tag{1pt}
\end{equation*}
$$

Multiply the equation with $v(x)$: the general solution is

$$
\begin{aligned}
v(x) z^{\prime}+v(x) \cdot 3 z & =33 v(x) \\
e^{3 x} z^{\prime}+\frac{d}{d x}\left(e^{3 x}\right) z & =33 e^{3 x} \\
\frac{d}{d x}\left(e^{3 x} z(x)\right) & =33 e^{3 x} \\
e^{3 x} z(x) & =11 e^{3 x}+C \\
z(x) & =11+C e^{-3 x}
\end{aligned}
$$

Remark: For the derivation [0.5 pt] and for the answer [0.5 pt] Alternatively, you write the differential equation as

$$
z^{\prime}+z=-4
$$

and solve the homogeneous equation

$$
z^{\prime}+z=0
$$

giving $z_{c}(x)=c e^{-x}$, [1 pt], and find a particular solution $z_{p}(x)=-4$ [0.5 pt]. This leads to

$$
z(x)=z_{c}(x)+z_{p}(x)=c e^{-x}-4 \quad[\mathbf{0 . 5} \mathbf{~ p t}]
$$

Remark: Similar for the escape equation $z^{\prime}=-3 z+33$.

