TEST
Software Systems:
Programming

course code: 201700117

date: 01 February 2018
time: 13:45-16:45

General

m While making this, you may use the following (unmarked) materials:

- the reader;

- the slides of the lectures;

- the books which are specified as course materials for the module (or copies of the required pages
of said books);

- adictionary.

You may rot use any of the following:

- solutions of any exercises published on Blackboard (such as recommended exercises or old tests);
- your own materials (copies of (your) code, solutions of lab assignments, notes of any kind, etc.).

m When you are asked to write Java code, follow code conventions where they are applicable. Failure
to do so may result in point deductions. You do not have to add annotations or comments, unless
explicitly asked to do so.

= No points will be deducted for minor syntax issues such as semicolons, braces and commas in written
code, as long as the intended meaning can be made out from your answer.

m This test consists of 6 exercises for which a total of 100 points can be scored. The minimal number of
points is zero. Your final grade of this test will be determined by the sum of points obtained for each
exercise.

m The grade for this test is used in calculating the final grade of the module. The formula used to do so
can be found in the reader.

2 Test Software Systems: Programming— 01 February 2018

Question 1 (15 points)

Consider the following two Java classes:

/& *
+ ShopItem is a base class, representing items to be sold
+ in a shop. Actual ShopItems will be represented by sub classes.
*/
public abstract class ShopItem {
private String title = "";
private double price;

//@ requires title != null
public void setTitle (String title) {
this.title = title;

//@ pure ensures \result != null
public String getTitle() {
return title;

//@ requires price >= 0.0
public void setPrice (double price) {
this.price = price;

//@ pure ensures \result >= 0.0
public double getPrice() {
return price;

}

// Subclasses are required to override toString with an implementation
// that shows all relevant information about that ShopItem

@Override

public abstract String toString();

public class Book extends ShopItem {
private String author;

//@ requires author != null && title != null;
public Book (String author, String title) {
this.author = author;
setTitle (title);

//@ pure ensures \result != null
public String getAuthor () {
return author;

//@ pure ensures \result != null
@0Override
public String toString() {
return "Book:_" + getTitle() + ", by," + author;

Test Software Systems: Programming— 01 February 2018 / 3 i

a. (5 points) Assume we have Java variable declarations:

- ShopItem item, bookItem;
- Book bk;

Which of the following statements are actually legal Java code, where by “legal” we mean that the
Java compiler will accept this code.

M item = new Shopltem();

(2) bk = new Book ("Shakespeare™", "Hamlet");

(3) bookItem = new Book ("Cervantes", "Don_Quixote");
(4) bk.setPrice (45.00);

(5) string auth = bookItem.getAuthor ();

b. (5 points) Have a look at the JML specifications. In particular, look at the JML specification for the
getAuthor and the toString method from Book. Do you believe the specifications are actually

correct? Explain your answer.

¢. (5 points) In our shop, we want to sell more than just “books”. We need to define some more ex-
tensions of shopItem like, for instance, a class for representing “movies”. Create a Class "Movie”
that extends ShopItem and that can represent movie information. It must represent a title, a director,
a year of publication, and a price. "title” and “director” are Strings, “year” is an int, “price” is a
double. You just have to give the Java code, so in particular, no JML is required.

4 Test Software Systems: Programming— 01 February 2018

Question 2 (20 points)

In this question, we build on the ShopItem, Book, and the Movie classes defined in the previous Question.
ShopList is a new class that we use to represent lists of books and movies:

Az
+ A java.util.List of ShopItem’s,
* with some extra utility methods added.
*/
public class Shoplist extends ArrayList<ShopItem>{
Jorx
+ Returns the concatenation of the toString() representations
* of all ShopItem’s on the List, separated by newline characters.
*/
@Override
public String toString() {
StringBuilder result = new StringBuilder();
for (ShopItem item : this) { // "this" refers to the ArrayList instance
result.append(item); // appends item.toString()
result.append(’\n’); // appends a newline character.
}

return result.toString();

Here is a table containing some books (the first three items) as well as some movies (the last two items).

Title Author Director | Year | Price
Shakespeare Hamlet 35.00
Cervantes Don Quixote 27.00
Austen Pride and Prejudice 14.95
The Godfather Coppola | 1972 | 25.00
Gladiator Scott 2000 | 35.00

a. (4 points) Create a Java class “MyShop”, containing a method to initialize a ShopList. The name
and signature of the method should be: public ShopList initInventory().
Within this method, create an instance of ShopList, and fill it with the book data and movie data
from the table above.

Finally, write a few lines of code where you create and initialize a shopList typed variable called
“inventory” that you initialize using your initInventory method, and print the contents of the
inventory to the standard output.

Test Software Systems: Programming— 01 February 2018 5

Next we consider the following interface “pPredicate”. It is a simplification of the “real” Java 8
Predicate interface.

public interface Predicate<T> {
boolean test (T object);

}

We provide one possible implementation Bargainrilter of this interface. It selects books and
movies that are no more expensive than a certain specified 1imit:

public class BargainFilter implements Predicate<Shopltem> {
private double limit;

public BargainFilter (double limit) {
this.limit = limit;

}

@Override
public boolean test (ShopItem item) {
return item.getPrice() <= limit;

}

b. (2 points) Consider the following code fragment:
austen = new Book ("Austen", "Pride_and _Prejudice");
BargainFilter bargain = new BargainFilter (15.0);
What is the type, and what is the value of the following expression:
bargain.test (austen)

C. (5 points) Write your own Predicate<ShopItem> filter class, that we will call FavoriteMovies.
It should select movies of a specified director, produced before a certain specified year.
(The specified year is included, so it is “up to and including” the specified year.)

d. (7 points) Finally, we enrich the shopList class (from Question 2) with an extra method for filter-
ing” the list. The required new method is like this:

Sk
+ Creates and returns a new ShopList, consisting of all ShopItems from
this ShopList that satisfy the test from the specified filter Predicate
*/
public ShopList select (Predicate<ShopItem> filter) |
// ... (provide the code)
}

Provide the Java code for the select method. (Just the code for this method, leave out the remainder
of the shopList class).

e. (2 points) In part (a) of this question you created a ShopList typed variable called inventory.
Give an expression that selects all movies from “inventory” that Coppola produced until 1980, and
that cost no more than 30.00 euro.

6 Test Software Systems: Programming— 01 February 2018

Question 3 (20 points)

We extend our Book class from the previous questions:

public class ReviewedBook extends Book {
private List<String> reviews;

public ReviewedBook (String author, String title) {
super (author, title);
reviews = new ArraylList<String>();

/%
+ Adds a (non-null) text to the list of reviews.
+ Duplicate reviews will not be added a second time.
*/
public void addReview(String reviewText) {
if (! reviews.contains (reviewText)) {
reviews.add (reviewText);

public List<String> getReviews (} {
return reviews;

@Override
public String toString() {
StringBuilder display =
new StringBuilder ("Book: " + getTitle() + " by " + getAuthor());
for (String rev : reviews) ({
display.append ("\nReview:\n");
display.append(rev);
}
return display.toString();

a. (10 points) Provide JML specifications for the constructor and all methods included in the
ReviewedBook code. You do not have to specify the methods from the Book class. But of course
you should take into account the “requires” and “ensures™ from the JML specifications for that base
class.

Test Software Systems: Programming- 01 February 2018 7

Outside our “Shop” a separate system has been developed for collecting book reviews. It just records
book reviews for certain book titles. The system is described by the following BookReviews class:

public class 3ookReviews {
private Map<String, Set<String>> reviews =
new HashMap<String, Set<String>>();

/%@
* requires bookTitle != null && reviewText != null
* ensures getReviewsFor (bookTitle) ==
* \old(getReviewsFor(bookTitle)).add(reviewText)
*/

public void addNewReview (String bookTitle, String reviewText) {
Set<String> reviewsForTitle = reviews.get (bookTitle);
if (reviewsForTitle == null) ({
reviewsForTitle = new HashSet<String>();
reviews.put (bookTitle, reviewsForTitle);
}

reviewsForTitle.add (reviewText) ;

/*@ pure
*# ensures \result != null
*/
public Set<String> getReviewsFor (String bookTitle) {
Set<String> revs = reviews.get (bookTitle);
return (revs == null) 7 Collections.emptySet () : revs;

We want to use such BookReviews repositories, and your task is to add an appropriate method to the
ShopList class. It has the following specification:

/*@ requires repository != null
All ReviewedBooks in this ShopList will be updated, so as to include
* all reviews found in "repository" for that ReviewedBook.
*/

public void addBookReviews (BookReviews repository)

An example of usage, where we use again our “inventory” ShopList, would be:

BookReviews someReviews = new BookReviews ();

someReviews.addNewReview ("Hamlet ", "Greatest _play_of_all times!");
someReviews.addNewReview ("Hamlet", "Supposedly, great_literature, but_I fell _asleep");
someReviews.addNewReview ("Hamlet ", "Greatest_play, of _all_times!");
someReviews.addNewReview("Doanuixote", "Funny _tale");

(

inventory.addBookReviews (someReviews) ;

b. (10 points) Implement this addBookReviews method, as one of the methods of the ShopList class.
You only have to provide the code for the method itself.

Test Software Systems: Programming~ 01 February 2018

Question 4 (15 points)

a. (3 points) Declare a new Exception class “BookReviewException”, which will be used to indicate
that the same review would occurs twice in a ReviewedBook. (See Question 3 for ReviewedBook)

Reuse the existing Java construction mechanism to obtain Exceptions with dedicated messages.
b. (7 points) Change ReviewedBook . addReview as programmed in Question 3 so that it throws:

- a BookReviewException if the review text that is (attempted to be) added already occurs in
the list of reviews for that book;

- an IllegalArgumentException (which is a standard Java subclass of RuntimeException)
if the parameter reviewText is not a legal value.

In either case, the thrown Exception should have a decent error message. (The standard
IllegalArgumentException has a constructor that takes the message as a string parameter.)
Your answer should consist of the entire new addreview declaration.

c. (5 points) Write a code fragment that constructs a ReviewedBook “Ulysses” by “James Joyce”, and
add a review for that book. Include code to handle just those Exception(s) that must be handled,
as required by the Java language, in order for the code to compile correctly. When an exception is
thrown, its message should be printed on the standard output. Explain your choice of error handling.

Question 5 (15 points)

Consider the following classes “Bookshop” and “BookBuyer’™

public class Bookshop {

private int bookCount;
private double money = 0.0;

public Bookshop(int stock) {
bookCount = stock;

}

public void buy (int count, double price) {
if (count <= bookCount) {
bookCount = bookCount - count;
money = money + price;

public double getMoney () {
return money;

}

Test Software Systems: Programming— 01 February 2018 9

public class BookBuyer extends Thread {

private int bookWish;
private Bookshop favoriteShop;
private double moneyLeft;

public BookBuyer (int bookWish, double moneylLeft, Bookshop favoriteShop) {
this.bookWish = bookWish;
this.moneylLeft = moneyLeft;
this.favoriteShop = favoriteShop;

@Override
public void run{() {
favoriteShop.buy (bookWish, moneyLeft);

public static void main(String[] args) {
Bookshop popularShop = new Bookshop (7);
BookBuyer bert = new BookBuyer (3, 35.00, popularShop);
BookBuyer ernie = new BookBuyer (5, 45.00, popularShop);
bert.start ();
ernie.start ();
try {
bert.join();
ernie.join();
} catch (InterruptedException e) {
}
System.out.println("Profit: " + popularShop.getMoney());

a. (6 points) What are the possible outcomes printed by the main method of BookBuyer? Which of
them are erroneous? Explain your answer, in particular explain how each of the possible outcomes
can happen, referring to the execution steps of the program.

b. (4 points) If we remove the entire try-block from BookBuyer (lines 23-27), do the possible printed
outcomes change, and if so, how? Explain your answer.

¢. (5 points) In the original system (with try block), how can you modify Bookshop such that the
erroneous outcomes can no longer occur? Explain why your solution works.

10 Test Software Systems: Programming- 01 February 2018

Question 6 (15 points)

Consider a seller of WiFi-connected digital temperature sensors. The idea is that consumers buy those
sensors, connect them to a WiFi network, and go to a web-based online service to view the (graphs of the)
temperature measurements from anywhere in the world. Suppose the seller wants to make sure that the
messages sent from the sensor to the web server are not tampered with in their travel over the evil internet.

a. (3 points) Which of the following methods best used to protect the integrity of the messages? Explain
your answer.

A. Base64
B. HMAC
C. Scrypt

D. SHA256

b. (2 points) Integrity is one of the three often used security properties that, when violated, indicate there
is a security incident. What are the other two properties?

Of course the online service for viewing the temperature values has an account system: users can create an
account and protect it with a password.

c. (3 points) It is common practice to first apply a hash function to a password before storing it. Explain
why it is a good a idea for sites to apply a hash function to their users’ passwords instead of storing
them as-is.

Sometimes users forget their passwords and for this reason this online service has implemented a password-
reset functionality. After filling in an e-mail address, users are sent a new password by email. You notice
that these reset passwords are 10-12 characters long and have the following pattern:

- First, all passwords start with the text “tt”, “bbb”, or “gggg”.
- after which come 3 characters from the set {“g”, “k”, “I”, “0”}.
- this is followed by four digits,

d. (2 points) If an attacker would try to brute-force access to an account with such a reset password, how
many attempts would it at most take? Show your calculation.

After a while, the owner of the service is starting to hear rumors that there is an easy way to get access to
any account on the system. You are asked to investigate and solve this problem. You look around in the
messy code base and find the code shown below. Apparently someone thought it would be a good idea to
add some flexibility in the code handling the login process by combining the password with a string that
describes which (cryptographic) hash-function should be used. So a password “bike” in combination with
the MD35 hash function will be passed along as “MD5:bike”.

private Map<String, String> passwordDB;

+ Generates the hex—encoded hash of the password using a very flexible
+ scheme. The hash-function to use is embedded in the password: it 1is

+ separated by a colon. Example passwords: "MD5:abcd" or "SHAIl:s3cr3t".
* @throws NoSuchAlgorithmException

Test Software Systems: Programming— 01 February 2018 11

*/
public String getPWHash (String password) throws NoSuchAlgorithmException {

String[] r = password.split (":");

String prefix = r[0};

String realPassword = r[l};

MessageDigest md = MessageDigest.getInstance (prefix);
md.update (realPassword.getBytes ());

byte[] digest = md.digest();

return Hex.encodeHexString(digest);

public boolean login(String username, String password) {
boolean result = true;
if (passwordDB.containsKey(username)) {

try {
String passwordHash = getPWHash (password) ;
if (!passwordDB.get(username).equals(passwordHash)) {
result = false;

}
} catch (Exception e) {
// Whatever, shouldn’t happen, right?

}
} else ({
result = false;

}

return result;
}

De javadoc of the method string.split says the following:

public String[] split (String regex)
Splits this string around matches of the given regular expression.
This method works as if by invoking the two-argument split method with the given expression
and a limit argument of zero. Trailing empty strings are therefore not included in the resulting
array.
The string “boo:and:foo”, for example, yields the following results with these expressions:
Regex Result
- { "bOO", "and", "fOO" }
le) { "b!l’ " ", ll:and:f" }

Parameters
regex - the delimiting regular expression

Returns
the array of strings computed by splitting this string around matches of the given regular
expression

Suppose an attacker (somehow) has full control over the content of the variables username and password
that are passed along to the 1ogin method. There are (at least) two ways for the attacker to get the login
method to return true (and thus gaining access) without actually knowing a password.

e. (5 points) Describe at least one way an attacker can get access to any account. Also show how one
can (easily) solve this issue in the code.

