Discrete Mathematics for Computer Science, Solution/Correction standard, Sample Test; Part 2

1. Proof with Mathematical Induction (alternative form; Theorem 4.2).

Basis step for $n=1, n=2$ and $n=3$:

$$
a_{1}=2 \leq\left(\frac{5}{2}\right)^{1} ; a_{2}=6 \leq\left(\frac{25}{4}\right)=\left(\frac{5}{2}\right)^{2} ; a_{3}=15 \leq\left(\frac{125}{8}\right)=\left(\frac{5}{2}\right)^{3} .
$$

Thus the statement is correct for $n=1, n=2$ and $n=3$.
Induction step:
Let $k \geq 3$ and suppose that for all $1 \leq i \leq k$:

$$
\left.a_{i} \leq\left(\frac{5}{2}\right)^{i} \quad \text { (Induction Hypothesis: } \mathrm{IH}\right) .
$$

We must show that IH implies:

$$
\begin{equation*}
a_{k+1} \leq\left(\frac{5}{2}\right)^{k+1} \tag{1pt}
\end{equation*}
$$

Well, we have

$$
a_{k+1}=a_{k}+2 a_{k-1}+4 a_{k-2} \leq\left(\frac{5}{2}\right)^{k}+2\left(\frac{5}{2}\right)^{k-1}+4\left(\frac{5}{2}\right)^{k-2},
$$

where the inequality follows from the Induction Hypothesis.
Now it suffices to show that

$$
\left(\frac{5}{2}\right)^{k}+2\left(\frac{5}{2}\right)^{k-1}+4\left(\frac{5}{2}\right)^{k-2} \leq\left(\frac{5}{2}\right)^{k+1}
$$

By dividing both sides of this inequality by $\left(\frac{5}{2}\right)^{k-2}$, we obtain the equivalent inequality

$$
\left(\frac{5}{2}\right)^{2}+2\left(\frac{5}{2}\right)^{1}+4 \leq\left(\frac{5}{2}\right)^{3}
$$

This inequality clearly holds, since

$$
\begin{equation*}
\frac{25}{4}+\frac{10}{2}+4=\frac{50+40+32}{8}=\frac{122}{8} \leq \frac{125}{8} . \tag{2pt}
\end{equation*}
$$

This completes the proof by the principle of mathematical induction. (From the proof it must be crystal clear whàt is supposed [1 pt] and whàt must be proved [1 pt]. In case the induction hypothesis is not correctly formulated or the proof is not clearly written down: at most $\mathbf{1} \mathbf{~ p t ~ f o r ~ t h e ~ e n t i r e ~ e x e r c i s e) ~}$
2. (i) f is commutative, since for all $A, B \in \mathcal{P}(\mathcal{U})$ we have

$$
\begin{equation*}
f(A, B)=\overline{A \cup B}=\overline{B \cup A}=f(B, A) . \tag{2pt}
\end{equation*}
$$

(ii) f is not associative. E.g. take $\mathcal{U}=\{1\} ; A=\{1\} ; B=C=\varnothing$, then

$$
f(f(A, B), C)=\overline{\overline{A \cup B} \cup C}=\{1\} \quad \text { but } \quad f(A, f(B, C))=\overline{A \cup \overline{B \cup C}}=\varnothing .
$$

(iii) Suppose D is an identity of f. Then

$$
f(D, A)=f(A, D)=A \quad \text { for all } A \in \mathcal{P}(\mathcal{U}) .
$$

So $\overline{D \cup A}=A$ for all $A \in \mathcal{P}(\mathcal{U})$. Taking $A=\varnothing$ yields $\bar{D}=\varnothing$. Therefore $D=\mathcal{U}$ is the only candidate for an identity. But $D=\mathcal{U}$ yields $\overline{\mathcal{U} \cup A}=A$ for all $A \in \mathcal{P}(\mathcal{U})$. Taking $A=\mathcal{U}$, we get $\mathcal{U}=\varnothing$, contradicting the assumption that \mathcal{U} is nonempty.
Hence f does not have an identity.
3. Let $n=|A|$ and write $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.
(i) Proof of " \Rightarrow ":

Suppose that R is transitive.
Recall that $M_{i j} \in\{0,1\}$ for all i, j and that Boolean addition $(1+1=1)$ is used to compute M^{2}. Hence, in order to prove that $M^{2} \leq M$, it suffices to show that:

$$
\text { if } M_{i j}^{2}=1 \text { for some } i, j \in\{1,2, \ldots, n\} \text {, then also } M_{i j}=1 \text {. }
$$

So suppose $M_{i j}^{2}=1$ for some $i, j \in\{1, \ldots, n\}$.
Then the dot product of the $i^{\text {th }}$ row and $j^{\text {th }}$ column of M is equal to 1 : $\quad \sum_{k=1}^{n} M_{i k} M_{k j}=1$.
Therefore $\exists_{k \in\{1,2, \ldots, n\}}\left[M_{i k} M_{k j}=1\right]$, so $\exists_{k \in\{1,2, \ldots, n\}}\left[M_{i k}=1 \wedge M_{k j}=1\right]$. Hence, $\exists_{k \in\{1,2, \ldots, n\}}\left[a_{i} R a_{k} \wedge a_{k} R a_{j}\right]$, and therefore $a_{i} R a_{j}$, because R is transitive.
And so: $\quad M_{i j}=1$.
(ii) Proof of " \Leftarrow ":

Suppose that $M^{2} \leq M$.
In order to prove that R is transitive, let $a_{i}, a_{k}, a_{j} \in A$ be such that $a_{i} R a_{k}$ and $a_{k} R a_{j}$. We will show that $a_{i} R a_{j}$.
Well: $a_{i} R a_{k}$ and $a_{k} R a_{j}$ imply that $M_{i k}=1$ and $M_{k j}=1$, and so the dot product of the $i^{\text {th }}$ row and $j^{\text {th }}$ column of M is equal to 1 (note: here Boolean addition is used).
So $M_{i j}^{2}=1$, and therefore $M_{i j}=1$ because $M^{2} \leq M$.
Hence: $\quad a_{i} R a_{j}$.

