Discrete Mathematics for Computer Science, Solution/Correction standard, Sample Test; Part 2

1. Proof with Mathematical Induction (alternative form; Theorem 4.2). Basis step for n = 1, n = 2 and n = 3:

$$a_1 = 2 \le \left(\frac{5}{2}\right)^1; \ a_2 = 6 \le \left(\frac{25}{4}\right) = \left(\frac{5}{2}\right)^2; \ a_3 = 15 \le \left(\frac{125}{8}\right) = \left(\frac{5}{2}\right)^3.$$

statement is correct for $n = 1, n = 2$ and $n = 3$. [1 pt]

Thus the statement is correct for n = 1, n = 2 and n = 3. Induction step:

Let $k \ge 3$ and suppose that for all $1 \le i \le k$:

$$a_i \le \left(\frac{5}{2}\right)^i$$
 (Induction Hypothesis: IH). [1 pt]

We must show that IH implies:

$$a_{k+1} \le \left(\frac{5}{2}\right)^{k+1}.$$
 [1 pt]

Well, we have

$$a_{k+1} = a_k + 2a_{k-1} + 4a_{k-2} \le \left(\frac{5}{2}\right)^k + 2\left(\frac{5}{2}\right)^{k-1} + 4\left(\frac{5}{2}\right)^{k-2}$$

where the inequality follows from the Induction Hypothesis. Now it suffices to show that

$$\left(\frac{5}{2}\right)^k + 2\left(\frac{5}{2}\right)^{k-1} + 4\left(\frac{5}{2}\right)^{k-2} \le \left(\frac{5}{2}\right)^{k+1}$$

By dividing both sides of this inequality by $\left(\frac{5}{2}\right)^{\kappa-2}$, we obtain the equivalent inequality

$$\left(\frac{5}{2}\right)^2 + 2\left(\frac{5}{2}\right)^1 + 4 \le \left(\frac{5}{2}\right)^3.$$

This inequality clearly holds, since

$$\frac{25}{4} + \frac{10}{2} + 4 = \frac{50 + 40 + 32}{8} = \frac{122}{8} \le \frac{125}{8}.$$
 [2 pt]

This completes the proof by the principle of mathematical induction. (From the proof it must be crystal clear what is supposed **[1 pt]** and what must be proved **[1 pt]**. In case the induction hypothesis is not correctly formulated or the proof is not clearly written down: at most **1 pt** for the entire exercise)

2. (i) f is commutative, since for all $A, B \in \mathcal{P}(\mathcal{U})$ we have

$$f(A,B) = \overline{A \cup B} = \overline{B \cup A} = f(B,A).$$
 [2 pt]

(ii) f is not associative. E.g. take $\mathcal{U} = \{1\}; A = \{1\}; B = C = \emptyset$, then

$$f(f(A,B),C) = \overline{\overline{A \cup B} \cup C} = \{1\}$$
 but $f(A,f(B,C)) = \overline{A \cup \overline{B \cup C}} = \emptyset$. [2 pt]

(iii) Suppose D is an identity of f. Then

$$f(D,A) = f(A,D) = A$$
 for all $A \in \mathcal{P}(\mathcal{U})$.

[2 pt]

[3 pt]

So $\overline{D \cup A} = A$ for all $A \in \mathcal{P}(\mathcal{U})$. Taking $A = \emptyset$ yields $\overline{D} = \emptyset$. Therefore $D = \mathcal{U}$ is the only candidate for an identity. But $D = \mathcal{U}$ yields $\overline{\mathcal{U} \cup A} = A$ for all $A \in \mathcal{P}(\mathcal{U})$. Taking $A = \mathcal{U}$, we get $\mathcal{U} = \emptyset$, contradicting the assumption that \mathcal{U} is nonempty. Hence f does not have an identity.

- 3. Let n = |A| and write $A = \{a_1, a_2, \dots, a_n\}$.
 - (i) Proof of " \Rightarrow ":

Suppose that R is transitive.

Recall that $M_{ij} \in \{0, 1\}$ for all i, j and that Boolean addition (1 + 1 = 1) is used to compute M^2 . Hence, in order to prove that $M^2 \leq M$, it suffices to show that:

if
$$M_{ij}^2 = 1$$
 for some $i, j \in \{1, 2, \dots, n\}$, then also $M_{ij} = 1$.

So suppose $M_{ij}^2 = 1$ for some $i, j \in \{1, \ldots, n\}$.

Then the dot product of the i^{th} row and j^{th} column of M is equal to 1: $\sum_{k=1}^{n} M_{ik} M_{kj} = 1.$

Therefore $\exists_{k \in \{1,2,\dots,n\}} [M_{ik}M_{kj} = 1]$, so $\exists_{k \in \{1,2,\dots,n\}} [M_{ik} = 1 \land M_{kj} = 1]$. Hence, $\exists_{k \in \{1,2,\dots,n\}} [a_iRa_k \land a_kRa_j]$, and therefore a_iRa_j , because R is transitive. And so: $M_{ij} = 1$.

(ii) Proof of " \Leftarrow ":

Suppose that $M^2 \leq M$. In order to prove that R is transitive, let $a_i, a_k, a_j \in A$ be such that a_iRa_k and a_kRa_j . We will show that a_iRa_j . Well: a_iRa_k and a_kRa_j imply that $M_{ik} = 1$ and $M_{kj} = 1$, and so the dot product of the i^{th} row and j^{th} column of M is equal to 1 (note: here Boolean addition is used). So $M_{ij}^2 = 1$, and therefore $M_{ij} = 1$ because $M^2 \leq M$. Hence: a_iRa_j . [3 pt]