Discrete Mathematics for Computer Science Sample Test, Part 1

Duration: 60 min.
Motivate all your answers.
The use of electronic devices is not allowed.
A formula sheet is included.

In this exam: $\mathbb{N}=\{0,1,2,3, \ldots\}$.

1. $\quad p \in \mathbb{Z}^{+}$is called a prime if p has exactly two different divisors: 1 and p (so 1 is not a prime). Furthermore, $m \in \mathbb{Z}^{+}$is called a perfect square if m can be written as $m=k^{2}$ for some $k \in \mathbb{Z}^{+}$.
Let $A \subseteq \mathbb{Z}^{+}$. Give quantified expressions for the following statements. In part (b) you may use the notation $d \mid n$ for " d is a divisor of n ".
(a) [3 pt] At least one of the elements of A is a perfect square.
(b) $[3 \mathrm{pt}] \quad A$ does not contain any prime.
2. [6 pt]

Prove the validity of the following argument using the "Laws of Logic" and the "Rules of Inference".

$$
\begin{gathered}
(\neg p \vee q) \rightarrow r \\
s \vee \neg q \\
p \rightarrow t \\
(\neg p \wedge r) \rightarrow \neg s \\
\hline \therefore \neg t \rightarrow \neg q
\end{gathered}
$$

3. Let A and B be sets in a universe \mathcal{U}.
(a) [3 pt] Prove that: $\quad \mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.
(b) $[3 \mathrm{pt}] \quad$ Prove or disprove (using a counterexample) that $\mathcal{P}(A \cup B) \subseteq \mathcal{P}(A) \cup \mathcal{P}(B)$.

Total: 18 points

