Data \& Information - Test 2: Solutions

24 May 2017, 13:45-15:15

Question 1 (Database Schema)

1a) Contract_type(name, conditions, PK(name));

Flexible_contract_type(name, PK(name),
FK(name) REF Contract_type (name)
Time_slot(start_at, price, name NOT NULL, PK(starts_at),
FK(name) REF Flexible_contract_type(name));

1b) Alternative I: only tables for the subclasses Difficulty: Contract should be associated with each of the subclasses individually, (complicated) CHECKs needed to make sure that a contract is associated with a single contract type.

Alternative II: only a table for the superclass Difficulty: Time slots should be associated only with flexible contracts; can be done by including a CHECK in Time_slot.

Question 2 (Class Diagram)

Remarks:

- Another option for the generalization of Customer is to have subclasses for Corporate and Private customers. The generalication is then "dc", Private has no attributes.
- Assocation has (indicated in blue) is OK, but rendant, the information can be retrieved from the attributes of Contract and Customer for and the association for.
- Many multiciplicites that are given as "*" could have been more strictly defined as "1..*". Both are regarded as correct.

Question 3 (Normalization)

3a)
a) $M T \longrightarrow R \quad$ Yes, from 6 .
b) $R T \rightarrow M$

No. There could be different meters which have the same reading at the same moment
c) $\mathrm{PpD} \rightarrow \mathrm{Cu}$ Yes, from 3 .
d) COD $\rightarrow P p \quad$ Yes. $C o \rightarrow P p$ follows from 1, then COD $\rightarrow P p$ holds a fortiori
e) $C u D \rightarrow P p \quad$ No. A customer could have different properties for which he has different contracts
f) $M \rightarrow C o \quad$ No. If a property gets a new contract it does not imply that the meter is changed
g) $\mathrm{Co} \rightarrow P t \quad$ No. There are many different (time slots with) prices in a contract.
h) $\mathrm{Co} \rightarrow \mathrm{I} \quad$ Yes, from $1(\mathrm{Co} \longrightarrow \mathrm{Cu})$ and $2(\mathrm{Cu} \longrightarrow \mathrm{I})$
i) $\mathrm{Co} \rightarrow \mathrm{I} \quad$ Yes. In general, $\mathrm{X} \rightarrow Y$ implies $X \rightarrow Y$
j) $\mathrm{Co} \rightarrow \mathrm{Cu} P \mathrm{Pp} \quad$ (correct answer:)

Yes. Statement 1 implies $\mathrm{Co} \longrightarrow \mathrm{Cu}$ Pp which implies $\mathrm{Co} \rightarrow \mathrm{Cu} P \mathrm{Pp}$ (original answer, also graded as correct:)
No. This would mean that Cu Pp on the one hand and DIMPtRT on the other hand are completely independent. This is not the case, e.g. $M \rightarrow P p$ (4)

Ad j): Statement 1, "A contract is for one customer and for one property", implies that both customer and property are functionally dependent on contract, i.e., $\mathrm{Co} \rightarrow \mathrm{Cu} P \mathrm{Pp}$.
As an FD implies an MVD (see answer to subqestion i)), therefore the correct answer is "Yes". The argument given for the answer " $\mathrm{No}^{\prime \prime}$ is in itself correct: Indeed it is the case that Cu Pp is not completely independent from D IM Pt R T. (So the persons who answered this know what they are talking about and deserve points for j).) However, in the context of the functional dependency the argument is irrelevant.

How is it possible that a correct argument contradicts the correct solution? For those who want to know precisely, the paradox can be explained as follows.

If the multivalued dependency holds, then, for a given Co,
if $\quad C o C u_{1} P p_{1} D_{1} I_{1} M_{1} P t_{1} R_{1} T_{1}$ is a tuple in R
and $\mathrm{CoCu}_{2} P p_{2} D_{2} I_{2} M_{2} P t_{2} R_{2} T_{2}$ is a tuple in R,
is must be the case that

$$
\begin{array}{ll}
& C o C u_{1} P p_{1} D_{2} I_{2} M_{2} P t_{2} R_{2} T_{2} \\
\text { and a tuple in } R \\
\text { and } & C o C u_{2} P p_{2} D_{1} I_{1} M_{1} P t_{1} R_{1} T_{1}
\end{array} \text { is a tuple in } R \text {, }
$$

For arbitrary values of $C u$ and $P p$ this would not hold; e.g. $M \rightarrow P p$ would demand that $P p_{2}$ in the last tuple is in fact $P p_{1}$, it must be the case then that $P p_{2}=P p_{1}$.
But the values of $C u$ and $P p$ are not arbitrary. The functional dependency $C o \longrightarrow C u P p$ implies that for a given $C o$ there is only a single value for Cu and a single value for $P p$. In other words, it is given that $P p_{2}=P p_{1}$ and that $C u_{2}=C u_{1}$, hence the MVD condition trivially holds.

3b)

1) First, determine $\mathscr{F}^{+}=\{C \longrightarrow A B E F G, D \longrightarrow G, F \longrightarrow A B E G\}$

Schema R has one candidate key: $C D$.
All FDs in \mathscr{F} violate the BCNF condition,
because all of them have a left-hand side that is not a superkey.

For 2) and 3) the solution differs depending on which - arbitrarily chosen - FD you start with.
(i) Start with (arbitrarily chosen) functional dependency $C \rightarrow A B E F G$.
$(C)^{+}=$CABEFG. Splitting over C we get
$R_{1}(C, A, B, E, F, G)$, with $\mathscr{F}_{1}=\{C \longrightarrow A B E F G, F \longrightarrow A B E G\}$
$R_{2}(C, D), \quad$ with $\mathscr{F}_{2}=\{ \}$
Clearly, R_{2} is in BCNF, and has candidate key is CD.
For R_{1} we find candidate key C (all other attributes depend on C).
R_{1} is not in BCNF, however, as $F \longrightarrow A B E G$ violates the condition.
So we split R_{1} on $F \rightarrow A B E G$ and determine $(F)^{+}=F A B E G$.
This yields
$R_{11}(F, A, B, E, G), \quad$ with $\mathscr{J}_{11}=\{F \longrightarrow A B E G\}$
$R_{12}(F, C)$, with $\mathscr{F}_{12}=\{C \longrightarrow F\}$
R_{11} has candidate key F and is in BCNF,
R_{12} has candidate key C and is in BCNF.
3) From the original functional dependencies, $D \longrightarrow G$ was lost in the decomposition in step 1.

The other FDs still exist in $\mathscr{F}_{11} \mathrm{U} \mathscr{F}_{12} \mathrm{U} \mathscr{F}_{2}$.
(ii) Start with (arbitrarily chosen) functional dependency $F \longrightarrow A B E G$.
$(F)^{+}=$FABEG. Splitting over B we get
$R_{1}(F, A, B, E, G), \quad$ with $\mathscr{J}_{1}=\{F \longrightarrow A B E G\}$
$R_{2}(F, C, D), \quad$ with $\mathscr{F}_{2}=\{C \longrightarrow F\}$
R_{1} has candidate key F and is in BCNF
For R_{2} we find candidate key $C D$
R_{2} is not in BCNF, however, as $C \longrightarrow F$ violates the condition.
So we split R_{2} on $C \longrightarrow F$ and determine $(C)^{+}=C F$.
This yields
$R_{21}(C, F), \quad$ with $\mathscr{F}_{21}=\{C \longrightarrow F\}$
$R_{22}(C, D), \quad$ with $\mathscr{F}_{22}=\{ \}$
R_{21} has candidate key C and is in BCNF,
R_{22} has is clearly in BCNF and has candidate key CD
3) From the original functional dependencies, $D \longrightarrow G$ was lost in the decomposition in step 1.
(iii) Start with (arbitrarily chosen) functional dependency $D \rightarrow G$.
$(D)^{+}=D G$. Splitting over D we get
$R_{1}(D, G), \quad$ with $\mathscr{F}_{1}=\{D \rightarrow G\}$
$R_{2}(D, A, B, C, E, F), \quad$ with $\mathscr{F}_{2}=\{C \rightarrow A B E F, F \rightarrow A B E\}$
R_{1} is in BCNF, candidate key is D.
For R_{2} we find candidate key $C D$.
R_{2} is not in BCNF, both FDs violate the condition.
So we split R_{2} on (arbitrarily chosen) $F \rightarrow A B E$ and determine $(F)^{+}=F A B E$.
This yields
$R_{21}(F, A, B, E)$, with $\mathscr{F}_{21}=\{F \rightarrow A B E\}$
$R_{22}(F, C, D)$, with $\mathscr{J}_{12}=\{C \rightarrow F\}$
R_{21} has candidate key F and is in BCNF,
R_{22} has candidate key $C D$ and is not in BCNF, as the FD violates the condition.
So we split R_{22} on $C \rightarrow F$ and determine $(C)^{+}=C F$.
This yields
$R_{221}(C, F)$, with $\mathscr{F}_{21}=\{C \rightarrow F\}$
$R_{222}(C, D), \quad$ with $\mathscr{f}_{12}=\{ \}$
R_{221} has candidate key C and is in BCNF,
R_{22} has candidate key $C D$ and is in BCNF.
3) From the original functional dependencies, $F \rightarrow G$ was lost in the decomposition in step 1.

Note that in iii) the second and third step can be reversed, giving the same result.

