
Sample Exam
Compiler Construction

Summer 2023

Dr. Arnd Hartmanns

Main exam: 22 June / Resit: 7 July 2023

Example Solution and

Name

Grading Scheme

Student number Seat

Do not open this exam booklet before we ask you to. Do read this page carefully.

You can only write the exam at the seat allocated for you, and you must use the exam
booklet that carries your name and student number.

This is a closed-book exam. Leave bags and jackets out of reach. Turn off all electronic
devices and leave them with your bag. You may only take writing utensils, drinks, food,
and your student or identity card to your seat. Please have your student or identity card
clearly visible on your table.

Leaving your table or the room with your exam booklet is regarded as an attempt of
deception. You may not leave the room during the first 30 minutes and the last 15
minutes of the exam. If you need to use the restrooms, please alert the supervisor. Only
one person at a time may leave for the restrooms.

Before you start, please check that your exam booklet consists of 13 pages, sequentially
numbered, on 13 pages sheets of paper, and contains questions 1 through 7 b). This is
page 1.

Write your solutions on the (printed) right pages of the exam booklet, in the space
provided below the respective questions. Solutions written in a language other than
English, in red or similar colours, on the first or last page of the booklet, on the (blank)
left pages, or on additional sheets not referenced from the booklet, will not be graded.
Should you run out of space, ask the supervisor for an additional sheet of paper. You
may use a pencil.

The duration of the exam is 120 minutes. The total number of points of the questions
in this exam is 120. To pass the exam, 60 points will be sufficient.

Have fun!

1 2 3 4 5 6 7

6 15 25 9 16 38 11

Sum

120

Page 2

Question 1. True or False? (6 points)

For each of the following statements, decide whether it is true or false. If a statement is
false, very briefly (i.e. in at most one sentence) correct it or explain why it is false.

a) Deciding whether a context-free grammar is ambiguous is an NP-hard problem.

False:
It is undecidable.

b) 2-address code linear IRs are no longer in common use today.

True.

c) When using a global display for addressability, storing the display in global
memory works well for multi-threaded programs.

False:
For multithreaded programs, the display needs to be in thread-local memory.

Page 3

Question 2. Scanning (15 points)

Consider a language over the alphabet { a, b, c } with two token types defined by regular
expressions as follows:

1. Token type SHORT with regular expression ab

2. Token type LONG with regular expression (ab)∗c

a) Draw one DFA that recognises tokens of both types. Mark each accepting state with
a double outline and annotate it with the corresponding token type. (8 points)

(You do not need to draw edges for invalid inputs: we assume that input characters that
do not have an edge lead to a non-accepting invalid token state.)

Now assume we have embedded an implementation of such a DFA into a scanner that
repeatedly calls function NextWord (as in the lectures and the book, repeated below in
three columns) until it reaches the end of the input or finds an invalid token.

b) For each of the following inputs, state whether it is fully scanned successfully. If
yes, what are the resulting tokens and their token types? (7 points)

(i) ababcab

(ii) cbabab

(iii) ababab

Page 4

Question 3. Parsing (25 points)

The following grammar, in ANTLR-like notation, is for expressions with binary addition
(+) and subtraction (-) operators over single-letter identifiers of token type NAME. The
start symbol is expr.

1 expr: '(' expr ')'
2 | expr op NAME;
3 | NAME;
4 op: '+' | '-';

a) What is the associativity of the two operators according to this grammar? Mark
the correct answer. (1 point)

□ + and - are right-associative.

□ + and - are left-associative.

b) Is the grammar LL(1)? Briefly but precisely say why or why not. (3 points)

c) Draw the parse tree for the expression “(a + b) - c”. (6 points)

Page 5

Now consider the following grammar in BNF, where uppercase letters are nonterminals
and lowercase latin letters are terminals, and A is the start symbol:

A → B C

| a

B → C b

| ϵ

C → c

| ϵ

d) Give the FIRST and FOLLOW sets for all nonterminals, and the FIRST+ sets for
all rules. (12 points)

FIRST(A) = {

FIRST(B) = {

FIRST(C) = {

FOLLOW(A) = {

FOLLOW(B) = {

FOLLOW(C) = {

FIRST+(A→ B C) = {

FIRST+(A→ a) = {

FIRST+(B → C b) = {

FIRST+(B → ϵ) = {

FIRST+(C → c) = {

FIRST+(C → ϵ) = {

e) Is the grammar LL(1)? Briefly but precisely say why or why not. (3 points)

No,
because the FIRST+ sets overlap (both containing c)
for the two rules of nonterminal B.

Page 6

Question 4. Elaboration (9 points)

The following grammar in ANTLR-like notation with start symbol number defines a
language for non-negative binary numbers:

1 number: '0b' list;
2 list: list bit
3 | bit;
4 bit: '0'
5 | '1';

We want to compute the decimal values of such numbers; for example, the decimal value
of 0b0101 is 5.

a) We use one attribute decVal for all nonterminals. Below, for each grammar rule,
give an attribute rule so that number.decVal is computed as the decimal value of
the number. (6 points)

Grammar rule Attribute rule

number: '0b' list number.decVal ← list.decVal

list1: list2 bit list1.decVal ← 2 · list2.decVal + bit.decVal

| bit list1.decVal ← bit.decVal

bit: '0' bit.decVal ← 0

| '1' bit.decVal ← 1

b) Are your rules synthesised or inherited? If you have both types of rules, say which
of them are synthesised and which are inherited. Briefly justify your answer.

(3 points)

All rules are synthesised
because they all compute the value of a (parent) node
based (only) on the values of its child nodes.

Page 7

Question 5. Graph-Based IRs (16 points)

Consider the following Java-like code snippet, which finds the maximum element ≥ 0

contained in array a:

1 int max = 0;
2 int i = 0;
3 while(i < a.length) {
4 if(a[i] > max)
5 max = a[i];
6 i = i + 1;
7 }
8 print("Max:␣", result);

a) Draw the control flow graph of the code snippet. Use the line numbers as the nodes
of your graph, ignoring line 7. (7 points)

b) List all basic blocks of the snippet’s control flow graph that consist of more than
one node. (2 points)

Page 8

We recall the code snippet from the previous page:

1 int max = 0;
2 int i = 0;
3 while(i < a.length) {
4 if(a[i] > max)
5 max = a[i];
6 i = i + 1;
7 }
8 print("Max:␣", result);

c) Draw the data dependence graph for the code snippet. Again use the relevant line
numbers as nodes, and add a node for the array a. (7 points)

Page 9

Question 6. Procedures (38 points)

Consider the Pascal program below on the left, in which only procedure calls and variable
declarations are shown:

1 program Main;
2 var x, y, z: integer;
3 procedure A;
4 var x: integer;
5 begin { body A } end;
6 procedure B;
7 var y: real;
8 procedure C;
9 var z: real;

10 procedure D;
11 var y: real;
12 begin {body D }
13 A;
14 end;
15 begin { body C }
16 A; D;
17 end;
18 begin { body B }
19 C;
20 end;
21 begin { Main }
22 B;
23 end.

a) Fill the following static coordinate table for
the program. (8 points)

scope x y z

main (1, 0) (1, 4) (1, 8)

A (2, 0) (1, 4) (1, 8)

B (1, 0) (2, 0) (1, 8)

C (1, 0) (2, 0) (3, 0)

D (1, 0) (4, 0) (3, 0)

b) Draw the program’s scope and call graphs. (8 points)

Scope graph: Call graph:

Page 10

We continue with following Pascal program:

1 program Main;
2 var x: integer = 3, y: integer = 4, z: integer = 5;
3 function A(r: integer): integer;
4 var x: integer = 6;
5 begin A := r + x + y; end;
6 procedure B(x: integer);
7 begin { body B }
8 A(x + 1);
9 end;

10 begin { Main }
11 B(1);
12 end.

c) Draw a graph (as in the lectures) that visualises the structure and contents of the
activation records (ARs), including the values of variables, at the following point
in the program’s execution: In the implementation of line 5, A is about to perform
the jump back to the return address.

Annotate the ARs’ contents (e.g. “return address”, “return value”, etc.). Draw
pointers as arrows. Omit saved registers, and use static links to implement ad-
dressability. Write “—” for uninitialised or unknown values. For return addresses,
use the line number of the call in the caller’s code. Assume a memory-to-memory
model and heap-based allocation of ARs. (11 points)

Page 11

We recall the Pascal program from the previous page:

1 program Main;
2 var x: integer = 3, y: integer = 4, z: integer = 5;
3 function A(r: integer): integer;
4 var x: integer = 6;
5 begin A := r + x + y; end;
6 procedure B(x: integer);
7 begin { body B }
8 A(x + 1);
9 end;

10 begin { Main }
11 B(1);
12 end.

d) Write ILOC code implementing procedure B using a memory-to-memory model,
heap-based allocation of ARs, and static links. Assume that register r_hp points
to an area of memory to allocate A’s AR in (over increasing memory addresses),
that the ILOC code implementing A has label code_A, and that the callees restore
r_arp before returning. Do not use symbolic constants for memory offsets—use
concrete values. Ignore register saving. Use only the ILOC instructions listed on
the last page of this exam booklet. (11 points)

loadAI r_arp , -8 => r_1 // r_1 = x
addI r_1 , 1 => r_1 // r_1 = x + 1
store r_1 => r_hp // r starts callee 's AR

// +4 is return value
loadI #r => r_1
storeAI r_1 => r_hp , 8 // +8 is return address
loadAI r_arp , -4 => r_1
storeAI r_1 => r_hp , 12 // +12 is static link
storeAI r_arp => r_hp , 16 // +16 is caller 's AR
addI r_hp , 16 => r_arp // update r_arp
jumpI -> code_A // jump into code for A

// ignore return value
r: loadAI r_arp , -8 => r_jmp // load return address

load r_arp => r_arp // restore caller 's ARP
jump -> r_jmp // return

Please double-check this self-proclaimed solution, and think about a good and effi-
cient grading scheme for the 11 points!

(This question may be slightly too complex/time-consuming to appear in an exam,
but it is good practice for similar but simpler/shorter questions that could appear.)

Page 12

Question 7. Optimisations (11 points)

The following ILOC code implements an assignment involving variables a, b, and c:

loadAI r_arp, @a => r_1 // (1− 3)
add r_1, r_1 => r_1 // (4− 4)
loadAI r_arp, @b => r_2 // (5− 7)
mult r_1, r_2 => r_1 // (8− 9)
loadAI r_arp, @c => r_2 // (10− 12)
mult r_1, r_2 => r_1 // (13− 14)
storeAI r_1 => r_arp, @a // (15− 17)

a) In Java-like syntax, what is the assignment implemented by the ILOC code?
(3 points)

Let us assume that the ILOC code is executed on an idealised pipelined CPU. On this
CPU, at most one instruction can be started in each clock cycle. Instructions loadAI and
storeAI complete in 3 clock cycles, mult completes in 2 clock cycles, and add completes
in 1 clock cycle. An instruction that reads from register r can only start after any
previous instruction writing to r is finished. We have annotated the ILOC code above
with its execution timing.

b) Reorder the ILOC instructions to implement the same assignment, but take as few
clock cycles as possible to execute on the pipelined CPU. You may use different
and additional registers. Annotate your optimised code with its execution timing.

(8 points)

=> // (−)

=> // (−)

=> // (−)

=> // (−)

=> // (−)

=> // (−)

storeAI => r_arp, @a // (−)

(An ILOC instruction reference table is included on the last page of this exam booklet.)

Page 13

ILOC Reference

Opcode Sources Targets Meaning

Memory operations
loadI c1 r2 c1 ⇒ r2
load r1 r2 Memory(r1)⇒ r2
loadAI r1, c2 r3 Memory(r1 + c2)⇒ r3
loadAO r1, r2 r3 Memory(r1 + r2)⇒ r3
store r1 r2 r1 ⇒Memory(r2)

storeAI r1 r2, c3 r1 ⇒Memory(r2 + c3)

storeA0 r1 r2, r3 r1 ⇒Memory(r2 + r3)

Arithmetic
add r1, r2 r3 r1+r2 ⇒ r3
addI r1, c2 r3 r1+c2 ⇒ r3
sub r1, r2 r3 r1−r2 ⇒ r3
subI r1, c2 r3 r1−c2 ⇒ r3
mult r1, r2 r3 r1 ∗r2 ⇒ r3
multI r1, c2 r3 r1 ∗c2 ⇒ r3

Control flow
cmp_LT r1, r2 r3 true⇒ r3

false⇒ r3

if r1 < r2
otherwise

cmp_LE r1, r2 r3 true⇒ r3
false⇒ r3

if r1 ≤ r2
otherwise

cmp_GT r1, r2 r3 true⇒ r3
false⇒ r3

if r1 > r2
otherwise

cmp_GE r1, r2 r3 true⇒ r3
false⇒ r3

if r1 ≥ r2
otherwise

cmp_EQ r1, r2 r3 true⇒ r3
false⇒ r3

if r1 = r2
otherwise

cmp_NE r1, r2 r3 true⇒ r3
false⇒ r3

if r1 ̸= r2
otherwise

cbr r1 l2, l3 l2 → PC
l3 → PC

if r1 = true
otherwise

Jumps
jumpI — l1 l1 → PC

jump — r1 r1 → PC

