I. (a)
$$A_2 = [-\frac{1}{2}, 4), A_4 = [-\frac{1}{4}, 8)$$
 [0.5 pt]

So
$$A_4 - A_2 = [4, 8)$$
. [0.5 pt]

$$A_1 = [-1, 2), A_2 = [-\frac{1}{2}, 4), \dots, A_{10} = [-\frac{1}{10}, 20).$$
 [0.5 pt]

So
$$\bigcap_{k=1}^{10} A_k = \begin{bmatrix} \frac{1}{10}, 2 \end{bmatrix}$$
 and $\bigcup_{k=1}^{10} A_k = \begin{bmatrix} -1, 20 \end{bmatrix}$. [1.5 pt]

(Argumentation: [1 pt], answers: [2 pt]).

(b) Truth table for $(p \land q) \rightarrow r$ and $(p \rightarrow r) \land (q \rightarrow r)$:

p	q	r	$p \wedge q$	$(p \land q) \to r$	$p \rightarrow r$	$q \rightarrow r$	$(p \to r) \land (q \to r)$
0	0	0	0	1	1	1	1
0	0	1	0	1	1	1	1
0	1	0	0	1	1	0	0
0	1	1	0	1	1	1	1
1	0	0	0	1	0	1	0
1	0	1	0	1	1	1	1
1	1	0	1	0	0	0	0
1	1	1	1	1	1	1	1

[2 pt]

Conclusion: The fifth and last column are not identical, so the propositions are not logial equivalent. [1 pt]

(Correct truth table [2 pt] (column incorrect: -0.5 pt), explanation how the conclusion can be deduced from the table + correct answer [1 pt]. If table is not correct but the way the conclusion is deduced from the table is: 1 pt).

2. Basis step for n = 1:

$$\sum_{i=1}^{1} (-1)^{i} \cdot i^{2} = (-1)^{1} \cdot 1^{2} = -1 \text{ and also } \frac{1}{2} (-1)^{1} \cdot 1 (1+1) = -1.$$

So the statement is correct for $n = 1$. [0.5 pt]

Induction step:

Let $k \ge 1$ and suppose that:

$$\sum_{i=1}^{n} (-1)^{i} \cdot i^{2} = \frac{1}{2} (-1)^{k} k(k+1)$$
 (Induction hypothesis: IH). [1 pt]

We must show that IH implies: $\sum_{i=1}^{k+1} (-1)^i \cdot i^2 = \frac{1}{2} (-1)^{k+1} (k+1)(k+2).$ [0.5 pt]

Well:
$$\sum_{i=1}^{k+1} (-1)^i \cdot i^2 = \sum_{i=1}^k (-1)^i \cdot i^2 + (-1)^{k+1} \cdot (k+1)^2.$$
 [0.5 pt]

By IH this expression is equal to
$$\frac{1}{2}(-1)^k k(k+1) + (-1)^{k+1} \cdot (k+1)^2$$
. [0.5 pt]
Now it remains to show that

$$\frac{1}{2}(-1)^k k(k+1) + (-1)^{k+1} \cdot (k+1)^2 = \frac{1}{2}(-1)^{k+1}(k+1)(k+2).$$
 [0.5 pt]

Indeed, dividing this equation by $\frac{1}{2}(-1)^k(k+1)$, we obtain: k-2(k+1) = -(k+2), which is obviously correct.

[0.5 pt]

Now we obtain from the principle of mathematical induction that for all $n \ge 1$:

$$\sum_{i=1}^{n} (-1)^{i} \cdot i^{2} = \frac{1}{2} (-1)^{n} n(n+1).$$

(From the proof it must be crystal clear what is supposed **[1 pt]** and what must be proved **[1 pt]**. In case of nonsense formulations like "Suppose it is correct FOR ALL n, so it also holds for n + 1": at most 1 pt for the entire exercise)

3. (a) From the 20 + 30 = 50 members, a set of 7 members must be selected, and the order in which these members are selected does not matter. So we want to know the number of 7-combinations in 50. **[0.5 pt]**

The number is equal to: $\binom{50}{7}$. [0.5 pt]

(answer: [0.5 pt], (some) argumentation: [0.5 pt]).

(b) The number of women must be 4, 5, 6 of 7.The number of ways a group of 4 women can be chosen out of 30 is equal to:

$$\binom{30}{4}$$
. [0.5 pt]

For *each* choice of 4 women, there are $\binom{20}{3}$ ways the complete the committee with 3 men.

So, the number of committees with exactly 4 women is:

$$\binom{30}{4} \cdot \binom{20}{3}.$$
 [1 pt]

Similarly, the number of committees with 5, 6 en 7 women respectively is equal to:

$$\begin{pmatrix} 30\\5 \end{pmatrix} \cdot \begin{pmatrix} 20\\2 \end{pmatrix}, \quad \begin{pmatrix} 30\\6 \end{pmatrix} \cdot \begin{pmatrix} 20\\1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 30\\7 \end{pmatrix} \cdot \begin{pmatrix} 20\\0 \end{pmatrix}.$$
 [0.5 pt]

Therefore, the total number of committees that can be formed is:

$$\begin{pmatrix} 30\\4 \end{pmatrix} \cdot \begin{pmatrix} 20\\3 \end{pmatrix} + \begin{pmatrix} 30\\5 \end{pmatrix} \cdot \begin{pmatrix} 20\\2 \end{pmatrix} + \begin{pmatrix} 30\\6 \end{pmatrix} \cdot \begin{pmatrix} 20\\1 \end{pmatrix} + \begin{pmatrix} 30\\7 \end{pmatrix} \cdot \begin{pmatrix} 20\\0 \end{pmatrix}.$$
 [1 pt]

(Just the answer, without any argumentation: [1.5 pt]).