1. (a) $A_{2}=\left[-\frac{1}{2}, 4\right), A_{4}=\left[-\frac{1}{4}, 8\right)$

So $A_{4}-A_{2}=[4,8)$.
$A_{1}=[-1,2), A_{2}=\left[-\frac{1}{2}, 4\right), \ldots, A_{10}=\left[-\frac{1}{10}, 20\right)$.
So $\bigcap_{k=1}^{10} A_{k}=\left[\frac{1}{10}, 2\right) \quad$ and $\quad \bigcup_{k=1}^{10} A_{k}=[-1,20)$.
(Argumentation: [1 pt], answers: [2 pt]).
(b) Truth table for $(p \wedge q) \rightarrow r \quad$ and $\quad(p \rightarrow r) \wedge(q \rightarrow r)$:

p	q	r	$p \wedge q$	$(p \wedge q) \rightarrow r$	$p \rightarrow r$	$q \rightarrow r$	$(p \rightarrow r) \wedge(q \rightarrow r)$
0	0	0	0	1	1	1	1
0	0	1	0	1	1	1	1
0	1	0	0	1	1	0	0
0	1	1	0	1	1	1	1
1	0	0	0	1	0	1	0
1	0	1	0	1	1	1	1
1	1	0	1	0	0	0	0
1	1	1	1	1	1	1	1

[2 pt]
Conclusion: The fifth and last column are not identical, so the propositions are not logial equivalent.
[1 pt]
(Correct truth table [2 pt] (column incorrect: -0.5 pt), explanation how the conclusion can be deduced from the table + correct answer [1 pt]. If table is not correct but the way the conclusion is deduced from the table is: 1 pt).
2. Basis step for $n=1$:
$\sum_{i=1}^{1}(-1)^{i} \cdot i^{2}=(-1)^{1} \cdot 1^{2}=-1$ and also $\frac{1}{2}(-1)^{1} \cdot 1(1+1)=-1$.
So the statement is correct for $n=1$.
[0.5 pt]
Induction step:
Let $k \geq 1$ and suppose that:
$\sum_{i=1}^{k}(-1)^{i} \cdot i^{2}=\frac{1}{2}(-1)^{k} k(k+1)$ (Induction hypothesis: IH).
[1 pt]
We must show that IH implies: $\sum_{i=1}^{k+1}(-1)^{i} \cdot i^{2}=\frac{1}{2}(-1)^{k+1}(k+1)(k+2)$.
[0.5 pt]

Well: $\sum_{i=1}^{k+1}(-1)^{i} \cdot i^{2}=\sum_{i=1}^{k}(-1)^{i} \cdot i^{2}+(-1)^{k+1} \cdot(k+1)^{2}$.
By IH this expression is equal to $\frac{1}{2}(-1)^{k} k(k+1)+(-1)^{k+1} \cdot(k+1)^{2}$.
Now it remains to show that
$\frac{1}{2}(-1)^{k} k(k+1)+(-1)^{k+1} \cdot(k+1)^{2}=\frac{1}{2}(-1)^{k+1}(k+1)(k+2)$.
[0.5 pt]
Indeed, dividing this equation by $\frac{1}{2}(-1)^{k}(k+1)$, we obtain:
$k-2(k+1)=-(k+2)$, which is obviously correct.
[0.5 pt]
Now we obtain from the principle of mathematical induction that for all $n \geq 1$:

$$
\sum_{i=1}^{n}(-1)^{i} \cdot i^{2}=\frac{1}{2}(-1)^{n} n(n+1) .
$$

(From the proof it must be crystal clear whàt is supposed [1 pt] and whàt must be proved [1 pt]. In case of nonsense formulations like "Suppose it is correct FOR ALL n, so it also holds for $n+1 "$: at most 1 pt for the entire exercise)
3. (a) From the $20+30=50$ members, a set of 7 members must be selected, and the order in which these members are selected does not matter. So we want to know the number of 7 -combinations in 50.
[0.5 pt]
The number is equal to: $\binom{50}{7}$.
[0.5 pt]
(answer: [0.5 pt$]$, (some) argumentation: [0.5 pt$]$).
(b) The number of women must be $4,5,6$ of 7 .

The number of ways a group of 4 women can be chosen out of 30 is equal to:

$$
\binom{30}{4}
$$

[0.5 pt]
For each choice of 4 women, there are $\binom{20}{3}$ ways the complete the committee with 3 men.

So, the number of committees with exactly 4 women is:

$$
\binom{30}{4} \cdot\binom{20}{3} .
$$

[1 pt]
Similarly, the number of committees with 5,6 en 7 women respectively is equal to:

$$
\binom{30}{5} \cdot\binom{20}{2}, \quad\binom{30}{6} \cdot\binom{20}{1} \quad \text { and } \quad\binom{30}{7} \cdot\binom{20}{0} .
$$

Therefore, the total number of committees that can be formed is:

$$
\binom{30}{4} \cdot\binom{20}{3}+\binom{30}{5} \cdot\binom{20}{2}+\binom{30}{6} \cdot\binom{20}{1}+\binom{30}{7} \cdot\binom{20}{0} .
$$

(Just the answer, without any argumentation: [1.5 pt]).

