Course : Mathematics B2 (Newton)

Date : November 28, 2014

Solutions

1. f continuous at $x=1$ means $\lim _{x \rightarrow 1} f(x)=f(1)$.
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}\left(x^{2}+a x\right)=1+a$
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \frac{x^{2}-1}{x-1}=\lim _{x \rightarrow 1^{+}} \frac{(x-1)(x+1)}{x-1}=\lim _{x \rightarrow 1^{+}}(x+1)=2$
Therefore, $f(1)=1+a=2$, so $a=1$.
2. Plugging in $t=0$ gives indeterminate $\frac{0}{0}$, so we use l'Hôpital's rule.
$\lim _{t \rightarrow 0} \frac{\ln \left(2 t^{2}+1\right)}{t^{2}}=\lim _{t \rightarrow 0} \frac{\frac{4 t}{2 t^{2}+1}}{2 t}$
$\lim _{t \rightarrow 0} \frac{\frac{4 t}{2 t^{2}+1}}{2 t}=\lim _{t \rightarrow 0} \frac{2}{2 t^{2}+1}=2$
3. For extrema, we investigate critical and endpoints, so $x=0, x=4$
and all x for which $f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not exist.
$f^{\prime}(x)=0 \Leftrightarrow \frac{1}{2 \sqrt{x}}(3-x)-\sqrt{x}=0 \Leftrightarrow 3-x=2 x \Leftrightarrow x=1$
Extrema candidates are $f(0)=0, f(1)=2$ and $f(4)=-2$.
The function must have absolute extrema, so we conclude that $f(1)=2$ is the absolute maximum and $f(4)=-2$ is the absolute minimum.
4. Polar coordinates: $x=r \cos \theta$ and $y=r \sin \theta$.
$\frac{x^{3}+y^{3}}{x^{2}+y^{2}}=\frac{r^{3} \cos ^{3} \theta+r^{3} \sin ^{3} \theta}{r^{2}}=r \cos ^{3} \theta+r \sin ^{3} \theta$
$\lim _{r \rightarrow 0^{+}}\left(r \cos ^{3} \theta+r \sin ^{3} \theta\right)=0$
It follows that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y^{2}}=0$.
5. $\frac{\partial z}{\partial x}=\sin (x+y)+x \cos (x+y)$
$\frac{\partial z}{\partial y}=x \cos (x+y)$
Equation tangent plane: $z-z_{0}=\left.\left(x-x_{0}\right) \frac{\partial z}{\partial x}\right|_{\left(x_{0}, y_{0}\right)}+\left.\left(y-y_{0}\right) \frac{\partial z}{\partial y}\right|_{\left(x_{0}, y_{0}\right)}$
Take $x_{0}=-1, y_{0}=1$ and $z_{0}=0$, we have $z=-x-y$.
