UNIVERSITY OF TWENTE

Department of Electrical Engineering, Mathematics and Computer Science
Solution exam Linear Algebra on Friday March 26, 2021, 13.45 - 15.45 hours.
1.

Consider three lines in \mathbb{R}^{3} :

$$
\begin{aligned}
& \ell_{1}:\left\{\mathrm{x} \in \mathbb{R}^{3} \left\lvert\, \mathrm{x}=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)+\lambda\left(\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right)\right. \text { for some } \lambda \in \mathbb{R}\right\} \\
& \ell_{2}:\left\{\mathrm{x} \in \mathbb{R}^{3} \left\lvert\, \mathrm{x}=\left(\begin{array}{c}
0 \\
-1 \\
2
\end{array}\right)+\lambda\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right. \text { for some } \lambda \in \mathbb{R}\right\} \\
& \ell_{3}:\left\{\mathrm{x} \in \mathbb{R}^{3} \left\lvert\, \mathrm{x}=\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right)+\lambda\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)\right. \text { for some } \lambda \in \mathbb{R}\right\}
\end{aligned}
$$

Verify whether these three lines have a common intersection point and, if so, determine all these intersection points.
In order to solve this problem we reason as follows: Suppose $\mathbf{x} \in \mathbb{R}^{3}$ is a common point of intersection. Well, in that case \mathbf{x} belongs (in particular) to the line ℓ_{1}. From the definition of ℓ_{1} above we conclude that there exists a real number, let's say λ_{1}, such that we can write

$$
\mathbf{x}=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)+\lambda_{1}\left(\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right)
$$

Now, since the point \mathbf{x} also belongs to the lines ℓ_{2} and ℓ_{3}, we conclude that there exist real numbers λ_{2} and λ_{3} such that we can write

$$
\mathbf{x}=\left(\begin{array}{c}
0 \\
-1 \\
2
\end{array}\right)+\lambda_{2}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \quad \text { and } \quad \mathbf{x}=\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right)+\lambda_{3}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) .
$$

We now have three different expressions representing the same point \mathbf{x}. Equating these expressions to each other, we obtain the following equations:

$$
\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)+\lambda_{1}\left(\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right)=\left(\begin{array}{c}
0 \\
-1 \\
2
\end{array}\right)+\lambda_{2}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right)+\lambda_{3}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) .
$$

To find this point of intersection (if it exists), we need to solve these equations for λ_{1}, λ_{2} and λ_{3}.
We first compute intersection points of lines ℓ_{1} and ℓ_{2}. We focus on the following equation:

$$
\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)+\lambda_{1}\left(\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right)=\left(\begin{array}{c}
0 \\
-1 \\
2
\end{array}\right)+\lambda_{2}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

This yields the following linear system:

$$
\left(\begin{array}{cc}
-1 & -1 \\
1 & -1 \\
-1 & 0
\end{array}\right)\binom{\lambda_{1}}{\lambda_{2}}=\left(\begin{array}{c}
-1 \\
-3 \\
1
\end{array}\right)
$$

It is easily checked that this has a unique solution $\lambda_{1}=-1$ and $\lambda_{2}=2$. Therefore the lines ℓ_{1} and ℓ_{2} intersect in exactly one point:

$$
\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)+\lambda_{1}\left(\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right)=\left(\begin{array}{l}
2 \\
1 \\
2
\end{array}\right)
$$

Next, we need to check whether this intersection point lies on ℓ_{3}. We find the condition

$$
\left(\begin{array}{l}
2 \\
1 \\
2
\end{array}\right)=\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right)+\lambda_{3}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

for some λ_{3}. Solving this equation we find $\lambda_{3}=1$. Hence our intersection point also lies on the line ℓ_{3}. Therefore the answer is:

$$
\left(\begin{array}{l}
2 \\
1 \\
2
\end{array}\right)
$$

2.

Find all possible α for which the volume of the parallelepiped with vertices ($\alpha, 0,1$), $(1,-1,1),(-1,1,2)$ and $(0,0,0)$ is equal to 6 .

We should have:

$$
\left|\operatorname{det}\left(\begin{array}{ccc}
\alpha & 1 & -1 \\
0 & -1 & 1 \\
1 & 1 & 2
\end{array}\right)\right|=6
$$

This yields:

$$
|-3 \alpha|=6
$$

and we find $\alpha=2$ or $\alpha=-2$.
3.

Consider the matrix

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 2 & 0 \\
2 & 1 & 2
\end{array}\right)
$$

Determine the inverse of the matrix A and the inverse of the matrix A^{T}.

We have:

$$
\begin{aligned}
\left(\begin{array}{lll|lll}
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 2 & 0 & 0 & 1 & 0 \\
2 & 1 & 2 & 0 & 0 & 1
\end{array}\right) & \sim\left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 2 & -1 & -1 & 1 & 0 \\
0 & 1 & 0 & -2 & 0 & 1
\end{array}\right) \\
& \sim\left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & -2 & 0 & 1 \\
0 & 2 & -1 & -1 & 1 & 0
\end{array}\right) \\
& \sim\left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & -2 & 0 & 1 \\
0 & 0 & -1 & 3 & 1 & -2
\end{array}\right) \\
& \sim\left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & -2 & 0 & 1 \\
0 & 0 & 1 & -3 & -1 & 2
\end{array}\right) \\
& \sim\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 4 & 1 & -2 \\
0 & 1 & 0 & -2 & 0 & 1 \\
0 & 0 & 1 & -3 & -1 & 2
\end{array}\right)
\end{aligned}
$$

Therefore:

$$
A^{-1}=\left(\begin{array}{ccc}
4 & 1 & -2 \\
-2 & 0 & 1 \\
-3 & -1 & 2
\end{array}\right)
$$

Next, we have:

$$
\left(A^{\mathrm{T}}\right)^{-1}=\left(A^{-1}\right)^{\mathrm{T}}=\left(\begin{array}{ccc}
4 & 1 & -2 \\
-2 & 0 & 1 \\
-3 & -1 & 2
\end{array}\right)^{\mathrm{T}}=\left(\begin{array}{ccc}
4 & -2 & -3 \\
1 & 0 & -1 \\
-2 & 1 & 2
\end{array}\right) .
$$

4.

Consider the matrices

$$
A=\left(\begin{array}{cccc}
1 & 2 & -1 & 0 \\
1 & 1 & -1 & 0 \\
-2 & 1 & 1 & -1 \\
2 & 0 & -1 & 1
\end{array}\right), \quad R=\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Given is that R is the row-reduced echelon form of the matrix A. In that case, a basis for $\operatorname{Col} A$ is given by:
a) $\left\{\left(\begin{array}{c}1 \\ 1 \\ -2 \\ 2\end{array}\right),\left(\begin{array}{l}2 \\ 1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-1 \\ -1 \\ 1 \\ -1\end{array}\right)\right\}$
b) $\left\{\left(\begin{array}{c}1 \\ 1 \\ -2 \\ 2\end{array}\right),\left(\begin{array}{l}2 \\ 1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ 0 \\ -1 \\ 1\end{array}\right)\right\}$
c) $\left\{\left(\begin{array}{c}1 \\ 1 \\ -2 \\ 2\end{array}\right),\left(\begin{array}{c}-1 \\ -1 \\ 1 \\ -1\end{array}\right),\left(\begin{array}{c}0 \\ 0 \\ -1 \\ 1\end{array}\right)\right\}$
d) $\left\{\left(\begin{array}{l}2 \\ 1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-1 \\ -1 \\ 1 \\ -1\end{array}\right),\left(\begin{array}{c}0 \\ 0 \\ -1 \\ 1\end{array}\right)\right\}$

Indicate which of the above four options are correct and which of these options are wrong.

First, we know that if we select the columns of A which have a pivot in the row-reduced echelon form, then we are guaranteed to get a bases for $\operatorname{Col} A$. So we can immediately deduced that option a) will be true. However, we know that bases are not unique, so we need to consider the other possibilities and decide which ones give a correct basis.
We can see from the row-reduced echelon form that the columns of A are not linearly independent. Indeed, we can see that Null A can be written as

$$
\operatorname{Null} A=\operatorname{Span}\left\{\left(\begin{array}{c}
1 \\
0 \\
1 \\
-1
\end{array}\right)\right\} .
$$

The vector in the nullspace gives explicitly a dependency in the columns of A, i.e. $\mathbf{a}_{1}+\mathbf{a}_{3}-\mathbf{a}_{4}=\mathbf{0}$.
From this dependency we conclude that in order to form a basis for $\operatorname{Col} A$, we only need two out of the three vectors $\mathbf{a}_{1}, \mathbf{a}_{3}, \mathbf{a}_{4}$ to form a basis (plus the vector \mathbf{a}_{2}, which is linearly independent from the other columns).
To be more explicit, we can argue as follows: By definition, $\mathrm{Col} A$ is spanned by $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\}$. Given the dependency mentioned above, \mathbf{a}_{1} can be expressed in terms of \mathbf{a}_{3} and \mathbf{a}_{4} and therefore

$$
\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\}=\operatorname{Span}\left\{\mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\}
$$

Similarly, \mathbf{a}_{3} can be expressed in terms of \mathbf{a}_{1} and \mathbf{a}_{4}, so

$$
\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\}=\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{4}\right\}
$$

and expressing \mathbf{a}_{4} can be expressed in terms of \mathbf{a}_{1} and \mathbf{a}_{3} we get

$$
\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\}=\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}
$$

This implies that a), b) and d) are true. However, in c) we deleted \mathbf{a}_{2} and according to R we cannot express \mathbf{a}_{2} in terms of $\mathbf{a}_{1}, \mathbf{a}_{3}$ and \mathbf{a}_{4} and therefore c) is false (equivalently, the vectors $\mathbf{a}_{1}, \mathbf{a}_{3}, \mathbf{a}_{4}$ are linearly dependent so they do not form a basis).
5.

Given is the matrix A

$$
A=\left(\begin{array}{ccc}
1 & \alpha & 0 \\
0 & \alpha+1 & 1 \\
0 & 0 & 3-\alpha
\end{array}\right)
$$

where $\alpha \in \mathbb{R}$. Determine all $\alpha \in \mathbb{R}$ for which the matrix A is diagonalizable.
It is easy to verify that

$$
\operatorname{det}(\lambda I-A)=(\lambda-1)(\lambda-\alpha-1)(\lambda-3+\alpha)
$$

and therefore the eigenvalues are $1, \alpha+1$ and $3-\alpha$.
If we have three distinct eigenvalues then it is known that the matrix is diagonalizable. This is the case for $\alpha \neq 0,1,2$.

We still need to verify the three cases $\alpha=0,1,2$. If $\alpha=0$, we have:

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 3
\end{array}\right)
$$

with eigenvalues 1 and 3. For the matrix to be diagonalizable, we need two independent eigenvalues associated to the double eigenvalue 1 . It is easy to verify

$$
E_{1}(A)=\operatorname{Span}\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right\}
$$

so we do have two independent eigenvalues associated to the double eigenvalue 1 and therefore the matrix is diagonalizable.

If $\alpha=1$, we have:

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right)
$$

with eigenvalues 1 and 2. For the matrix to be diagonalizable, we need two independent eigenvalues associated to the double eigenvalue 2 . It is easy to verify

$$
E_{2}(A)=\operatorname{Span}\left\{\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\right\}
$$

so we have only one independent eigenvalues associated to the double eigenvalue 2 and therefore the matrix is not diagonalizable.

If $\alpha=2$, we have:

$$
A=\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 3 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

with eigenvalues 1 and 3 . For the matrix to be diagonalizable, we need two independent eigenvalues associated to the double eigenvalue 1 . It is easy to verify

$$
E_{1}(A)=\operatorname{Span}\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\}
$$

so we have only one independent eigenvalues associated to the double eigenvalue 1 and therefore the matrix is not diagonalizable.

Therefore, the matrix is diagonalizable for all $\alpha \in \mathbb{R}$ except for $\alpha=1$ and $\alpha=2$.
6.
$S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the linear transformation which takes each point $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ and rotates it first through 45 degrees (counterclockwise), then mirrors the result on the line $y=x$ and finally rotates it through 45 degrees (clockwise).
$T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the linear transformation which takes each point $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ and rotates it first through 30 degrees (counterclockwise), then projects the result on the line $y=x$ and, finally, rotates it through 60 degrees (clockwise).
a) Determine the representation matrix of S.

We have:

$$
\binom{1}{0} \longrightarrow\binom{\frac{1}{2} \sqrt{2}}{\frac{1}{2} \sqrt{2}} \longrightarrow\binom{\frac{1}{2} \sqrt{2}}{\frac{1}{2} \sqrt{2}} \longrightarrow\binom{1}{0}
$$

and

$$
\binom{0}{1} \longrightarrow\binom{-\frac{1}{2} \sqrt{2}}{\frac{1}{2} \sqrt{2}} \longrightarrow\binom{\frac{1}{2} \sqrt{2}}{-\frac{1}{2} \sqrt{2}} \longrightarrow\binom{0}{-1}
$$

Therefore the standard matrix is:

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

A different approach is to compute the standard matrices for each of the steps defining the transformation S, and then multiplying them in the correct order. Let S_{1} denote the first rotation (counterclockwise), S_{2} denote the reflection, and S_{3} denote the second rotation (clockwise). Then the standard matrices for these linear transformations are:

$$
S_{1}=\left(\begin{array}{cc}
\frac{1}{2} \sqrt{2} & -\frac{1}{2} \sqrt{2} \\
\frac{1}{2} \sqrt{2} & \frac{1}{2} \sqrt{2}
\end{array}\right), \quad S_{2}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad S_{3}=\left(\begin{array}{cc}
\frac{1}{2} \sqrt{2} & \frac{1}{2} \sqrt{2} \\
-\frac{1}{2} \sqrt{2} & \frac{1}{2} \sqrt{2}
\end{array}\right) .
$$

Multiplying these matrices we get:

$$
S=S_{3} S_{2} S_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

b) Determine whether T is surjective (onto) and/or injective (one-to-one).

We note that $T=T_{3} T_{2} T_{1}$ is a composition of three linear transformations. The second one T_{2} is a projection which is clearly neither one-to-one nor onto. On the other hand T_{1} and T_{3} are, as rotations, obviously invertible. But this implies that T is neither one-to-one nor onto. For instance.

$$
T_{2}\binom{1}{-1}=0
$$

yields

$$
T\left(T_{1}^{-1}\binom{1}{-1}\right)=0
$$

which shows T is not one-to-one. As a mapping from \mathbb{R}^{2} to \mathbb{R}^{2} this yields that T is not onto either.

The same conclusion can also be reached by thinking about the determinants. The determinant of

$$
T_{2}=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

is cleary zero (from the above expression or from the fact that it is a projection onto a line). This means that also the determinant of T is zero, and thus T is neither one-to-one nor onto.
7.
a) Show that if a matrix T has eigenvalue 1 then the matrix T^{2} also has an eigenvalue in 1.

If T has eigenvalue 1 then there exists a vector $\mathbf{x} \neq 0$ such that:

$$
T \mathbf{x}=\mathbf{x}
$$

But this implies

$$
T^{2} \mathbf{x}=T(T \mathbf{x})=T \mathbf{x}=\mathbf{x}
$$

and therefore \mathbf{x} is also an eigenvector of T^{2} with eigenvalues 1 which completes the proof.
b) Verify whether if a matrix T is such that matrix T^{2} has eigenvalue 1 then the matrix T itself also has an eigenvalue in 1 . If this is true prove it; if this is not true then give a counterexample.
No this is not true. For instance, if

$$
T=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)
$$

then

$$
T^{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

clearly has eigenvalue 1 but the matrix T has only eigenvalues in -1 .
8.

Consider the matrices A and B given by:

$$
A=\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 2 & 1 \\
1 & 0 & -1 \\
-1 & -1 & 1
\end{array}\right), \quad B=\left(\begin{array}{cccc}
1 & 1 & 0 & 2 \\
2 & 0 & 1 & 1 \\
0 & -1 & 1 & -2
\end{array}\right)
$$

It is given that Null $A=\{\mathbf{0}\}$ and $\operatorname{Col} B=\mathbb{R}^{3}$.
a) Determine Null $A B$

The easiest, and safest way to solve the problem is using some theorey to reason like this:
Because Null $A=\{\mathbf{0}\}$ we know that $A B \mathbf{x}=\mathbf{0}$ implies $B \mathbf{x}=\mathbf{0}$. Therefore Null $A B=$ Null B. We have:

$$
\begin{aligned}
B=\left(\begin{array}{cccc}
1 & 1 & 0 & 2 \\
2 & 0 & 1 & 1 \\
0 & -1 & 1 & -2
\end{array}\right) & \sim\left(\begin{array}{cccc}
1 & 1 & 0 & 2 \\
0 & -2 & 1 & -3 \\
0 & -1 & 1 & -2
\end{array}\right) \\
& \sim\left(\begin{array}{cccc}
1 & 1 & 0 & 2 \\
0 & 1 & -1 & 2 \\
0 & -2 & 1 & -3
\end{array}\right) \\
& \sim\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & -1 & 2 \\
0 & 0 & -1 & 1
\end{array}\right) \\
& \sim\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1
\end{array}\right)
\end{aligned}
$$

We find:

$$
\text { Null } A B=\operatorname{Null} B=\operatorname{Span}\left(\begin{array}{c}
-1 \\
-1 \\
1 \\
1
\end{array}\right)
$$

Of course, it is also possible to explicitly compute $A B$ and work from there. However, this mehtod is slower, requires more computations, and is much more prone to mistakes! For the sake of completeness, we show here the product $A B$ and its row-reduced echelon form:

$$
A B=\left(\begin{array}{cccc}
3 & 1 & 1 & 3 \\
4 & -1 & 3 & 0 \\
1 & 2 & -1 & 4 \\
-3 & -2 & 0 & -5
\end{array}\right), \quad R=\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

b) Determine $\operatorname{Col} A B$

Because $\operatorname{Col} B=\mathbb{R}^{3}$, we have that $\operatorname{Col} A B=\operatorname{Col} A$. Moreover, since Null $A=\{0\}$ the columns of A are independent. We find:

$$
\operatorname{Col} A B=\operatorname{Col} A=\operatorname{Span}\left\{\left(\begin{array}{c}
1 \\
0 \\
1 \\
-1
\end{array}\right),\left(\begin{array}{c}
1 \\
2 \\
0 \\
-1
\end{array}\right),\left(\begin{array}{c}
0 \\
1 \\
-1 \\
1
\end{array}\right)\right\}
$$

9.

Given are two bases of \mathbb{R}^{3} :

$$
\mathcal{S}=\left\{\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right)\right\} \quad \text { and } \quad \mathcal{T}=\left\{\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
2 \\
2
\end{array}\right)\right\}
$$

For a vector $\mathbf{x} \in \mathbb{R}^{3}$ it is given that

$$
[\mathbf{x}]_{\mathcal{S}}=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right) .
$$

Determine $[\mathrm{x}]_{\mathcal{T}}$.
Given $[\mathbf{x}]_{\mathcal{S}}$, we can compute \mathbf{x} :

$$
\mathbf{x}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)-\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)+\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Next we have to express \mathbf{x} in terms of the basis vectors of \mathcal{T} :

$$
\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=t_{1}\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right)+t_{2}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+t_{3}\left(\begin{array}{l}
0 \\
2 \\
2
\end{array}\right)=\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 1 & 2 \\
1 & 1 & 2
\end{array}\right)\left(\begin{array}{l}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\right)
$$

This yields

$$
[\mathbf{x}]_{\mathcal{T}}=\left(\begin{array}{l}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\right)=\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)
$$

