Resit Exam Testing Techniques
192170015

I July 2015
To make this exam:
e You are allowed to have 1 A4 sheet with your notes and nothing else.
o Make each exercise on a separate page.
e Write your name on each separate page that you hand in.

e Hand in the exam as well.

We wish you a lot of success!

Note by Marcus: The solutions presented here are by no means complete. They do,
however, give an indication of how a solution could look like.
Let me know in case any questions arise.

1 What is testing?

1. Describe the purpose of testing. (I points)

2. In his guest lecture, Machiel van der Bijl presented how Axini uses model-based
testing in practice. Describe their main reasons for using model-based testing.
(1 points)

Answers:

1. We’ll accept a multitude of answers here, given it’s only 1 point.

Testing makes better software cheaper.

Testing supports debugging.

Testing shows that a system works.

Testing shows that a system is not working.
Testing reduces the risk of software not working.
Testing investigates the quality of software.

Testing is a mental discipline that results in low risk software.

cf. lecture 1 slide 10.

2. This used to be a guest lecture in testing techniques. We’ll read it as ”Describe
the main advantages of MBT.”

Enforcing formal-methods/formal-models improves unclear and poorly de-
fined requirements.

Once model is created, tests are generated automatically.
Tests are evaluated automatically.

Reusability and the distribution of models.

Saves time in software development lifecycle.

Various model formalisms with multiple advantages.

cf. assignment 4 exercise 1.

2 Blackbox Testing.

The C function saved calculates the total sum of money that results after saving for
years a certain fixed amount per year with a fixed interest rate. More precisely, on
Januari 1st of each year a certain amount amount is put in a bank account. Each year
on December 31st, the bank sents out an account summary indicating the total amount
of money in the account. The bank uses the function saved below to compute the
total amount of money after years years of saving.

The three inputs must be greater than or equal to 0; the output is a real value (double
in C).

double saved(int amount, double rate, int years)

{
int j;
double s;

j=1;
s = amount x (1.0 + rate/100);

s = (s + amount) * (1.0 + rate/100.0);
= j+1;

while (j<years);

return s;

1. Give a formal specification for the function saved as pre- and postconditions,
based on the informal description. (2 points)

2. Use the equivalence partitioning technique to divide the input suitable equiva-
lence classes. (2 points)

3. Give a test set that covers all equivalence classes. (I points)
4. Extend the test set following the principle of boundary value analysis. (2 points)
5. Use the principle of error guessing to extend your test suite. (2 points)

6. Give a test case that fails on the implementation above. (1 points)

Answers:

1. Since we did not properly deal in the course with pre- and postconditions, we’ll

use something similar like

e Pre:
— #inputs is 3.
— input 1 integer > 0.
— input 2 double > 0.
— input 3 integer > 0.

e Post:
— Output is double > 0.
. year te\q
— Outputis amount - 3 577 (1 + 455)7
2. We’ll mostly reuse the results of 1. here:
Valid Invalid
inputs =30 <32 ; >30
input values mp; > 0@ inpy, > 06 inpg > 0@©) np; <0@ inpy, <0® inpy <0©
input type | inp, int.(0) inp, double (1) inp; int (12) | inp; AL.a3) inp, double (14) inp5 it as)
output type output is double (16) -
output value output is > 0 (17) -

A test suite covering all valid and invalid classes could be the following. Note
that I leave out all the valid classes in the invalid test cases for readability.

Test Input Covered Classes Expected Result
[10055.2;5] | (1),(4),5),6),(10),(11),(12),(16),(17) Some value

[) Error
(1]) Error
[1;1.2]) Error
[1;2;3:4] @3) Error
[-1;1.0:1] %) Error
[1;-1.0;1] ®) Error
[1;1.0;-1]) Error
[’s7;1.0;1] 13) Error
[1;7s7;1] (14) Error
[1;1.0;°s] 15) Error

3. For boundary value analysis, we have 3 inputs, and an output with respective

lower and upper bounds:

Inputl Input2 Input3 Output
Lower Bound 0 0 0 0
Upper Bound MaxInt MaxInt MaxInt MaxInt

With these, we add the following test cases to the existing test suite:

Covered BVA Class | Expectation
[-1;10;10] BLB inp 1 Error
[0;10;10] LBinp 1 Some value
[1;10;10] ALB inp 1 Some value
[MAXINT-1;10;10] BUB inp 1 Some value
[MAXINT;10;10] UB inp 1 Some value
[10;-1;10] BLB inp 2 Error
[10;0;10] LB inp 2 Some value
[10;1;10] ALB inp 2 Some value
[10;MAXINT-1;10] BUB inp 2 Some value
[10;MAXINT;10] UB inp 2 Some value
[10;10;-1] BLB inp 3 Error
[10;10;0] LB inp 3 Some value
[10;10;1] ALB inp 3 Some value
[10;10;MAXINT-1] BUB inp 3 Some value
[10;10;MAXINT] UB inp 3 Some value
[10;10;0] LB out 0
[0.01;0;1] ALB out 0.01

Note that I did not calculate the values here. What is essential is, that we expect
some positive value.

. Error guessing may suggest to test for rate vs 1 + (rate/100), i.e. a test case
[1;50;1] vs [1;150;1]. Another possible guess is to check whether the function
rounds correctly, i.e. is the result a float with 2 digits.

. For instance [-1;10;10] - Error - fails on the implementation. The implementation
simply calculates with a negative amount, while an error was expected.

a?/b!

S1 52
a?/b! a?/c!
s S
4 a?/b! 3

Figure 1: The FSM A, where s is initial.

3 FSM testing

1. Describe the notion of soundness for FSM testing. (2 points)
2. Prove that the state tour method is sound. (2 points)

3. Prove that the state tour method is not complete. (2 points)

?/cl
4. Use the transition test method to derive a test for the transition so i) S3.

Describe the steps that you performed to obtain this test. (2 points)

5. Suppose you have tested a system implementation using FSM transition testing,
and it passed all tests. Give four reasons why the implementation could not work
as desired, despite the fact that FSM transition testing is complete. (2 points)

Answers:

1. A test (suite) is sound wrt the specification, if every conforming implementation
passes the test suite. In the specific case of FSM testing, conformance is replaced
by FSM equivalence. Examples of sound test (suites) are given by state tours,
transition tours, or transition testing, cf. lecture 3 slide 16.

2. To show
VS € FSM V state tour oof S VI = S : I passes o

Therefore, let .S be a specification FSM, let o be a state tour for S, and assume
I = S, ie. Iisaconforming FSM. Assume o = a1?/by as?/bs ...a,?/b,\.
By definition of state tours

As(0) = As(ar?as? ... ap?) =bylbs! ... byl
Then by definition of FSM equivalence, we have

Mi(o) = Ar(a1?as? ... a,?) = bilbs! ... by,

i.e. A\7(0) = Ag(c). We conclude: I passes o. Therefore, the state tour method
is sound.

3. We prove this by giving a counter example

Spec. oo b2/1! Impl. o b2/0!
oe

a?/0!

Obviously, 0 = a?/0! a?/1!is a state tour. However, the erroneous implementa-
tion on the right side is not found. This shows that the state tour is not complete.
?7/c! . ..
4. A transition test for the transition so i) s3 consists of a synchronising se-
quence, a transfer sequence, the input alongside the expected output, and the
state verification.

There is no synchronising sequence in the given FSM . Hence, we assume the
functionality of a reset button to synchronise with the initial state s1. The transfer
sequence to reach s is given by a?/b!. We then apply input a? and expect output
cl. To verify that we’re in s3, we apply a” a? a? a? and expect b! b! b! c!.

The test case then becomes

t={a?/bla?/c! a?/b! a?/bl a?/b! a?/c!}.

5. In case the implementation invalidates one or more of our assumptions. Among
them
e It is non-deterministic, or
o it has more states than spec. Recall that this is an assumption to guarantee

completeness of the transition tour.

Furthermore, the implementation might be dependent on other systems, i.e. failed
synchronisation etc. There might be issues with the testing tool, or errors in the
test suite, e.g. “over-optimised” test suites.

Note that these are not all reasons, but a mere illustration of possible reasons.

play? i play?
S 11 to t1 play?

song! stop! song!
play?

. play? . play?
191 Ug Ul play? 131 Vg U1 play?

stop! song! stop! song!
stop! song!

u;g/D play? V3

Figure 2: Transition systems S, i1, i3, and is; Sg, to, g, Vo are initial states.

4 Toco

The specification S in Figure 2 represents a simplified specification of an MP3 player.
After pushing the play button, a song is started. When the song is over, the MP3 player
either moves to a state where it starts a new song, or (if the play list is finished), it stops
playing and waits for the user to push the play button again.

1. Add §-transitions to the transition systems whenever required. (I points)
2. Describe the role of quiescence in QTSs. (2 points)

3. Which of the IOLTSs ¢4, i2, ¢3 in Figure 2 are ioco-correct implementations of
S? If an implementation is incorrect provide a test case that fails on this imple-
mentation. (7 points)

Answers:

1. We add a d-self loop in sq, tg, ug and v, respectively. These states do not enable
an output-action.

2. Quiescence describes the absence of outputs. Specification models need to ac-
count for lack of outputs in certain states, i.e. is no output ar all desired. In
ioco-theory quiescence is commonly denoted via J-transitions. These transitions
are added in quiescent states, i.e. states that do not enable outgoing output, or
internal actions. For example, states sg, tg, ug and vy are quiescent.

3. Both i; and i, are ioco to S.

IOLTS i3 is not ioco. First of all, it is not input-enabled. For the sake of this
exercise (Note from Marcus: I assume this was a typo?), let us assume that i3 is
input-enabled by adding a self-loop in vs with the label play?. A test case, that
would fail ¢3 is given by:

fail pass

The provided test contains a trace that ends in a leaf labeled with fail if composed
with i3, i.e. trace play? song! song!

5 Proofs

Are the following statements true or false? For a true statement give a proof, for a false
statement, give a counter example.

1. Suppose that we have a sound test suite for S. Suppose that we change one of
the pass verdicts in a fail. Statement: the resulting test suite is still sound. (3
points)

2. Suppose that we have a sound test suite for .S. Suppose that we change one of
the fail verdicts in a pass. Statement: the resulting test suite is still sound? (3

points)

3. Suppose that we have a complete test suite for S. Suppose that we change one
of the fail verdicts in a pass. Statement: the resulting test suite still complete? (3
points)

Answers:

1. Generally, this need not be true. We provide a counterexample:

Spec.
§ al) a!
fail pass fail fail

The left hand side is a sound test case for the specification given above. Changing
the pass label after a/ from pass to fail, however, makes the test case on the
right hand side not sound anymore. An implementation, which is ioco wrt the
specification would now fail the test.

2. This statement is true. Let T" be a sound test suite for .S, and assume I C;,., S
for an input enabled QTS I. Because T is sound and I C,., S, we know that

YVt €T :v(I) = pass.
This implies
Vo € execy(I) = ctraces(t || I) N ctraces(t) : a(o) = pass,

i.e. all “encountered” traces will have the pass label.

10

Now let 7" be the test suite created from 7" by changing some fail labels of traces
in tests to pass labels. We can easily see that

vt' € T' : vy (I) = pass,
as we still have that, forallt’ € T”
Vo € execy (I) : a(o) = pass.
Hence, 7" is still sound.

3. Generally, this need not be true. We provide a counterexample:

Spec. Impl.

Q@&

4 al
L]
fail pass and pass fail
1) a!
fail pass and pass pass

Note that the above test suite is complete according to Proposition 6.5. by
Brinksma, Timmer, Stoelinga (also see Assignment 5). However, changing the
fail verdict in the top-right test case after trace a/ a! to pass, makes it incom-
plete. To illustrate, note that the implementation above would now pass this test
suite, even though it is not ioco wrt the specification.

11

